-
摘要: 通过室内试验与现场水泥稳定碎石基层裂缝监测试验, 采用分布式BOTDA光纤监测技术, 研究了传感光纤的应变与裂缝宽度的关系、半刚性基层早期裂缝扩展规律以及裂缝发展速率。研究结果表明: 当裂缝宽度分别为3、6、9mm时, 聚氨酯封装的传感光纤应变分别为5.9×10-3、7.7×10-3、10.3×10-3, 金属基封装的传感光纤应变分别为1.5×10-3、1.6×10-3、2.1×10-3, 光纤应变随着裂缝宽度的增加而增大; 当裂缝宽度为9mm时, 聚氨酯与金属基封装的光纤应变分别为内定点铝合金铠装光纤平均应变的33.2、6.8倍, 因此, 聚氨酯与金属基封装的传感光纤裂缝监测效果较好; 在现场基层施工完成后第13d, 80m长的路段出现了3处微裂缝, 此期间最大温差为2.1℃, 说明基层裂缝的产生和发展主要在第1个月, 且主要是干缩裂缝, 干缩应力是裂缝产生及裂缝间距的主要影响因素; 在施工完成后第20、77、139d, 基层底面温度分别为10.3℃、2.5℃、9.4℃, 基层底面K24+656位置裂缝处光纤应变分别为4.2×10-4、9.5×10-4、4.3×10-4, 在139d之内, 没有新的裂缝出现, 说明温缩应力对早期裂缝间距的影响较小, 主要影响裂缝宽度, 温缩裂缝主要出现在干缩阶段干缩应力较大的位置; 当上、下基层连铺时, 基层上表面与底面的裂缝位置一致, 表明水泥稳定碎石基层横向裂缝为贯穿裂缝; 基层上表面裂缝发展速率分别是基层中间和底面的3.8、2.8倍, 基层上表面的裂缝发展速率最大。Abstract: By the laboratory and field cement-stabilized macadam base crack monitoring tests, the relationship between sensing fiber strain and crack width, crack propagation rule in early stage of semi-rigid base, and crack growth rate were researched based on the distributed BOTDA fiber monitoring technology.Research result shows that when the crack widths are 3, 6and 9mm, the strains measured by the sensing fiber encapsulated with polyurethane are 5.9×10-3, 7.7×10-3, and 10.3×10-3, respectively, the strains measured by the sensing fiber encapsulated with metal matrix are 1.5×10-3, 1.6×10-3, and 2.1×10-3, respectively, and the fiber strain rises with the increase of crack width.When the crack width is 9mm, the strains measured by the sensingfibers encapsulated with polyurethane and metal matrix are 33.2and 6.8times as big as the average value measured by the interval fixed fiber armored with aluminum alloy respectively, so the sensing fibers encapsulated with polyurethane and metal matrix performs better for crack monitoring.In field experiment, in 13 dafter construction, 3 micro cracks were found at 80 m long road section, and the largest temperature difference is 2.1 #C during this period, which indicates that the cracks in the base generate and develope mainly in the first month and the dry shrinkage cracks are dominant.The dry shrinkage stress is the main influence factor of crack generation and crack spacing.In 20, 77 and 139dafter construction, the temperatures at the bottom surface of base layer are 10.3℃, 2.5℃and 9.4℃, respectively, and the corresponding strains measured at the bottom surface of base layer at crack location of K24+656are 4.2×10-4, 9.5×10-4 and 4.3×10-4, respectively.No new cracks emerge in base layer in 139 d, which indicates that the influence of thermal shrinkage stress on early crack spacing is very less, and the thermal shrinkage stress mainly affects the crack width.The thermal shrinkage cracks basically appear at the position where the dry shrinkage stress displays peaks in the dry shrinkage phase.When the upper and lower base layers were constructed continuously, the positons of cracks of top surface and bottom are consistent. Hence, the transverse cracks in cement-stabilized macadam base are always penetrating cracks.Furthermore, the crack growth rate on the top surface is 3.8and 2.8times the values at the middle and bottom positons, respectively, so the crack growth rate on the top surface is biggest.
-
Key words:
- airport pavement /
- semi-rigid base /
- cement-stabilized macadam /
- crack propagation /
- sensing fiber
-
表 1 传感光纤的基本参数
Table 1. Basic parameters of sensing fibers
-
[1] 沙爱民. 半刚性基层的材料特性[J]. 中国公路学报, 2008, 21 (1): 1-5. doi: 10.3321/j.issn:1001-7372.2008.01.001SHA Ai-min. Material characteristics of semi-rigid base[J]. China Journal of Highway and Transport, 2008, 21 (1): 1-5. (in Chinese). doi: 10.3321/j.issn:1001-7372.2008.01.001 [2] 吕松涛, 郑健龙, 仲文亮. 养生期水泥稳定碎石强度、模量及疲劳损伤特性[J]. 中国公路学报, 2015, 28 (9): 9-15, 45. doi: 10.3969/j.issn.1001-7372.2015.09.002LU Song-tao, ZHENG Jian-long, ZHONG Wen-liang. Characteristics of strength, modulus and fatigue damage for cement stabilized macadam in curing period[J]. China Journal of Highway and Transport, 2015, 28 (9): 9-15, 45. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.09.002 [3] 王一琪, 谭忆秋, 王开生, 等. 水泥乳化沥青稳定碎石温缩特性[J]. 建筑材料学报, 2015, 18 (4): 584-588. doi: 10.3969/j.issn.1007-9629.2015.04.009WANG Yi-qi, TAN Yi-qiu, WANG Kai-sheng, et al. Temperature shrinkage characteristics of cement emulsified asphalt stabilized crushed stones[J]. Journal of Building Materials, 2015, 18 (4): 584-588. (in Chinese). doi: 10.3969/j.issn.1007-9629.2015.04.009 [4] ZHANG Peng, LI Qing-fu. Experimental study on shrinkage properties of cement-stabilized macadam reinforced with polypropylene fiber[J]. Journal of Reinforced Plastics and Composites, 2010, 29 (12): 1851-1860. doi: 10.1177/0731684409337336 [5] KODIKARA J, CHAKRABARTI S. Modeling of moisture loss in cementitiously stabilized pavement materials[J]. International Journal of Geomechanics, 2005, 5 (4): 295-303. doi: 10.1061/(ASCE)1532-3641(2005)5:4(295) [6] CHO Y H, LEE K W, RYU S W. Development of cementtreated base material for reducing shrinkage cracks[J]. Transportation Research Record, 2006 (1952): 134-143. [7] BENTURA, KOVLER K. Evaluation of early age cracking characteristics in cementitious systems[J]. Materials and Structures, 2003, 36 (3): 183-190. doi: 10.1007/BF02479556 [8] BANTHIA N, GUPTA R. Plastic shrinkage cracking in cementitious repairs and overlays[J]. Materials and Structures, 2009, 42 (5): 567-579. doi: 10.1617/s11527-008-9403-9 [9] MAALOUF M, KHOURY N, LAGUROS J G, et al. Support vector regression to predict the performance of stabilized aggregate bases subject to wet-dry cycles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36 (6): 675-696. doi: 10.1002/nag.1023 [10] PENEV D, KAWAMURA M. Estimation of the spacing and the width of cracks caused by shrinkage in the cement-treated slab under restraint[J]. Cement and Concrete Research, 1993, 23 (4): 925-932. doi: 10.1016/0008-8846(93)90046-C [11] 曾梦澜, 罗迪, 吴超凡, 等. 不同级配类型水泥稳定碎石路面基层材料的抗裂性能[J]. 湖南大学学报: 自然科学版, 2013, 40 (10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201310001.htmZENG Meng-lan, LUO Di, WU Chao-fan, et al. Anticracking properties of cement stabilized crushed stone pavement base materials of different aggregate structures[J]. Journal of Hunan University: Natural Sciences, 2013, 40 (10): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201310001.htm [12] 王宏畅, 黄晓明. 高等级沥青路面基层底裂缝三维数值分析[J]. 公路交通科技, 2005, 22 (12): 1-4. doi: 10.3969/j.issn.1002-0268.2005.12.001WANG Hong-chang, HUANG Xiao-ming. Three-dimensional numerical analysis for crack at bottom of asphalt pavement base course[J]. Journal of Highway and Transportation Research and Development, 2005, 22 (12): 1-4. (in Chinese). doi: 10.3969/j.issn.1002-0268.2005.12.001 [13] 吴赣昌, 凌天清. 半刚性基层温缩裂缝的扩展机理分析[J]. 中国公路学报, 1998, 11 (1): 21-28. doi: 10.3321/j.issn:1001-7372.1998.01.004WU Gan-chang, LING Tian-qing. The analysis of developing mechanism of thermal crack of the semi-rigid roadbase[J]. China Journal of Highway and Transport, 1998, 11 (1): 21-28. (in Chinese). doi: 10.3321/j.issn:1001-7372.1998.01.004 [14] 彭妙娟, 张登良, 夏永旭. 半刚性基层沥青路面的断裂力学计算方法及其应用[J]. 中国公路学报, 1998, 11 (2): 30-38. doi: 10.3321/j.issn:1001-7372.1998.02.005PENG Miao-juan, ZHANG Deng-liang, XIA Yong-xu. Computational method and its application of fracture mechanics for the asphalt pavement on semi-rigid type base course[J]. China Journal of Highway and Transport, 1998, 11 (2): 30-38. (in Chinese). doi: 10.3321/j.issn:1001-7372.1998.02.005 [15] TIMM D H, GUZINA B B, VOLLER V R. Prediction of thermal crack spacing[J]. International Journal of Solids and Structures, 2003, 40 (1): 125-142. doi: 10.1016/S0020-7683(02)00496-1 [16] ZHANG Peng, LI Qing-fu, LIU Chen-hui. Prediction of shrinkage cracking and corresponding cracking prevention measure of the semi-rigid base layer[J]. International Journal of Pavement Engineering, 2009, 10 (5): 383-388. doi: 10.1080/10298430802342781 [17] XUAN D X, MOLENAAR A A A, HOUBEN L J M. Shrinkage cracking of cement treated demolition waste as a road base[J]. Materails and Structures, 2016, 49 (1): 631-640. [18] 林绣贤. 半刚性基层沥青路面的研究[J]. 中国公路学报, 1990, 3 (4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL802.004.htmLIN Xiu-xian. A study of the bituminous pavement with semi rigid base course[J]. China Journal of Highway and Transport, 1990, 3 (4): 1-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL802.004.htm [19] 郭寅川, 申爱琴, 何天钦, 等. 疲劳荷载和冻融循环耦合作用下路面混凝土微裂缝扩展行为[J]. 交通运输工程学报, 2016, 16 (5): 1-9. http://transport.chd.edu.cn/article/id/201605001GUO Yin-chuan, SHEN Ai-qin, HE Tian-qin, et al. Microcrack propagation behavior of pavement concrete subjected to coupling effect of fatigue load and freezing-thawing cycles[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (5): 1-9. (in Chinese). http://transport.chd.edu.cn/article/id/201605001 [20] 邓学钧, 黄晓明, 杨军. 半刚性路面疲劳特性的环道试验研究[J]. 东南大学学报: 自然科学版, 1995, 25 (1): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX501.016.htmDENG Xue-jun, HUANG Xiao-ming, YANG Jun. The fatigue regular of semi-rigid base course[J]. Journal of Southeast University: Natural Science Edition, 1995, 25 (1): 94-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX501.016.htm [21] 高俊启, 施斌, 张巍, 等. 分布式光纤传感器用于桥梁和路面的健康监测[J]. 防灾减灾工程学报, 2005, 25 (1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200501002.htmGAO Jun-qi, SHI Bin, ZHANG Wei, et al. Application of distributed fiber optic sensor to bridge and pavement health monitoring[J]. Journal of Disaster Prevention and Mitigation Engineering, 2005, 25 (1): 14-19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200501002.htm [22] 钱振东, 黄卫, 关永胜, 等. BOTDA在沥青混凝土铺装层裂缝监测中的应用[J]. 东南大学学报: 自然科学版, 2008, 38 (5): 799-803. doi: 10.3321/j.issn:1001-0505.2008.05.012QIAN Zhen-dong, HUANG Wei, GUAN Yong-sheng, et al. Application of BOTDA on cracking monitoring for asphalt concrete pavement[J]. Journal of Southeast University: Natural Science Edition, 2008, 38 (5): 799-803. (in Chinese). doi: 10.3321/j.issn:1001-0505.2008.05.012 [23] 钱振东, 韩光义, 黄卫, 等. 基于BOTDA的钢桥面铺装裂缝疲劳扩展研究[J]. 土木工程学报, 2009, 42 (10): 132-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200910021.htmQIAN Zhen-dong, HAN Guang-yi, HUANG Wei, et al. A study on crack fatigue propagation of steel deck pavement based on BOTDA[J]. China Civil Engineering Journal, 2009, 42 (10): 132-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200910021.htm [24] LIU Wan-qiu, WANG Hua-ping, ZHOU Zhi, et al. Optical fiber-based sensors with flexible encapsulation for pavement behavior monitoring[J]. Structural Control and Health Monitoring, 2015, 22 (2): 301-313. [25] 张登良, 郑南翔. 半刚性基层材料收缩抗裂性能研究[J]. 中国公路学报, 1991, 4 (1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199101003.htmZHANG Deng-liang, ZHENG Nan-xiang. On the antishrinkage cracking performance of semi-rigid base course materials[J]. China Journal of Highway and Transport, 1991, 4 (1): 16-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199101003.htm [26] 胡青. 水泥稳定碎石混合料缩裂影响因素的试验研究[J]. 筑路机械与施工机械化, 2016, 33 (5): 67-70, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201605027.htmHU Qing. Experimental study on influencing factors of shrinkage and crack resistance properties of cement stabilized macadam[J]. Road Machinery and Construction Mechanization, 2016, 33 (5): 67-70, 75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201605027.htm [27] 延西利, 艾涛, 游庆龙, 等. 半刚性基层沥青路面的热传导试验特性延[J]. 长安大学学报: 自然科学版, 2016, 36 (5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201605001.htmYAN Xi-li, AI Tao, YOU Qing-long, et al. Experimental characteristics of heat conduction of semi-rigid base asphalt pavement[J]. Journal of Chang'an University: Natural Science Edition, 2016, 36 (5): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201605001.htm