留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BOTDA的机场道面半刚性基层裂缝扩展规律

高俊启 耿任山 盛余祥 安平 靳佩佩

高俊启, 耿任山, 盛余祥, 安平, 靳佩佩. 基于BOTDA的机场道面半刚性基层裂缝扩展规律[J]. 交通运输工程学报, 2017, 17(1): 28-35.
引用本文: 高俊启, 耿任山, 盛余祥, 安平, 靳佩佩. 基于BOTDA的机场道面半刚性基层裂缝扩展规律[J]. 交通运输工程学报, 2017, 17(1): 28-35.
GAO Jun-qi, GENG Ren-shan, SHENG Yu-xiang, AN Ping, JIN Pei-pei. Crack propagation rule of semi-rigid base of airport pavement based on BOTDA[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 28-35.
Citation: GAO Jun-qi, GENG Ren-shan, SHENG Yu-xiang, AN Ping, JIN Pei-pei. Crack propagation rule of semi-rigid base of airport pavement based on BOTDA[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 28-35.

基于BOTDA的机场道面半刚性基层裂缝扩展规律

基金项目: 

中国博士后科学基金项目 2013M541666

江苏省博士后科研计划项目 1302138C

详细信息
    作者简介:

    高俊启(1973-), 男, 山东菏泽人, 南京航空航天大学副教授, 工学博士, 从事道路工程研究

  • 中图分类号: V351

Crack propagation rule of semi-rigid base of airport pavement based on BOTDA

More Information
  • 摘要: 通过室内试验与现场水泥稳定碎石基层裂缝监测试验, 采用分布式BOTDA光纤监测技术, 研究了传感光纤的应变与裂缝宽度的关系、半刚性基层早期裂缝扩展规律以及裂缝发展速率。研究结果表明: 当裂缝宽度分别为3、6、9mm时, 聚氨酯封装的传感光纤应变分别为5.9×10-3、7.7×10-3、10.3×10-3, 金属基封装的传感光纤应变分别为1.5×10-3、1.6×10-3、2.1×10-3, 光纤应变随着裂缝宽度的增加而增大; 当裂缝宽度为9mm时, 聚氨酯与金属基封装的光纤应变分别为内定点铝合金铠装光纤平均应变的33.2、6.8倍, 因此, 聚氨酯与金属基封装的传感光纤裂缝监测效果较好; 在现场基层施工完成后第13d, 80m长的路段出现了3处微裂缝, 此期间最大温差为2.1℃, 说明基层裂缝的产生和发展主要在第1个月, 且主要是干缩裂缝, 干缩应力是裂缝产生及裂缝间距的主要影响因素; 在施工完成后第20、77、139d, 基层底面温度分别为10.3℃、2.5℃、9.4℃, 基层底面K24+656位置裂缝处光纤应变分别为4.2×10-4、9.5×10-4、4.3×10-4, 在139d之内, 没有新的裂缝出现, 说明温缩应力对早期裂缝间距的影响较小, 主要影响裂缝宽度, 温缩裂缝主要出现在干缩阶段干缩应力较大的位置; 当上、下基层连铺时, 基层上表面与底面的裂缝位置一致, 表明水泥稳定碎石基层横向裂缝为贯穿裂缝; 基层上表面裂缝发展速率分别是基层中间和底面的3.8、2.8倍, 基层上表面的裂缝发展速率最大。

     

  • 图  1  传感光纤布置(单位: mm)

    Figure  1.  Layout of sensing fibers (unit: mm)

    图  2  传感光纤

    Figure  2.  Sensing fibers

    图  3  试验梁裂缝

    Figure  3.  Crack of test beam

    图  4  不同裂缝宽度下的传感光纤F1应变曲线

    Figure  4.  Strain curves of sensing fiber F1at different crack widths

    图  5  不同裂缝宽度下的传感光纤F2应变曲线

    Figure  5.  Strain curves of sensing fiber F2at different crack widths

    图  6  试件应变曲线

    Figure  6.  Strain curves of specimens

    图  7  不同裂缝宽度下的传感光纤F3应变曲线

    Figure  7.  Strain curves of sensing fiber F3at different crack widths

    图  8  不同裂缝宽度下的传感光纤F4应变曲线

    Figure  8.  Strain curves of sensing fiber F4at different crack widths

    图  9  应变与裂缝宽度关系曲线

    Figure  9.  Relationship curves between strain and crack width

    图  10  水泥稳定碎石基层传感光纤布置

    Figure  10.  Layout of sensing fibers in cement-stabilized macadam base

    图  11  位置C1应变曲线

    Figure  11.  Strain curves of location C1

    图  12  位置C2应变曲线

    Figure  12.  Strain curves of location C2

    图  13  位置C3应变曲线

    Figure  13.  Strain curves of location C3

    图  14  应变-时间关系曲线

    Figure  14.  Relationship curves between strains and time

    表  1  传感光纤的基本参数

    Table  1.   Basic parameters of sensing fibers

    下载: 导出CSV
  • [1] 沙爱民. 半刚性基层的材料特性[J]. 中国公路学报, 2008, 21 (1): 1-5. doi: 10.3321/j.issn:1001-7372.2008.01.001

    SHA Ai-min. Material characteristics of semi-rigid base[J]. China Journal of Highway and Transport, 2008, 21 (1): 1-5. (in Chinese). doi: 10.3321/j.issn:1001-7372.2008.01.001
    [2] 吕松涛, 郑健龙, 仲文亮. 养生期水泥稳定碎石强度、模量及疲劳损伤特性[J]. 中国公路学报, 2015, 28 (9): 9-15, 45. doi: 10.3969/j.issn.1001-7372.2015.09.002

    LU Song-tao, ZHENG Jian-long, ZHONG Wen-liang. Characteristics of strength, modulus and fatigue damage for cement stabilized macadam in curing period[J]. China Journal of Highway and Transport, 2015, 28 (9): 9-15, 45. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.09.002
    [3] 王一琪, 谭忆秋, 王开生, 等. 水泥乳化沥青稳定碎石温缩特性[J]. 建筑材料学报, 2015, 18 (4): 584-588. doi: 10.3969/j.issn.1007-9629.2015.04.009

    WANG Yi-qi, TAN Yi-qiu, WANG Kai-sheng, et al. Temperature shrinkage characteristics of cement emulsified asphalt stabilized crushed stones[J]. Journal of Building Materials, 2015, 18 (4): 584-588. (in Chinese). doi: 10.3969/j.issn.1007-9629.2015.04.009
    [4] ZHANG Peng, LI Qing-fu. Experimental study on shrinkage properties of cement-stabilized macadam reinforced with polypropylene fiber[J]. Journal of Reinforced Plastics and Composites, 2010, 29 (12): 1851-1860. doi: 10.1177/0731684409337336
    [5] KODIKARA J, CHAKRABARTI S. Modeling of moisture loss in cementitiously stabilized pavement materials[J]. International Journal of Geomechanics, 2005, 5 (4): 295-303. doi: 10.1061/(ASCE)1532-3641(2005)5:4(295)
    [6] CHO Y H, LEE K W, RYU S W. Development of cementtreated base material for reducing shrinkage cracks[J]. Transportation Research Record, 2006 (1952): 134-143.
    [7] BENTURA, KOVLER K. Evaluation of early age cracking characteristics in cementitious systems[J]. Materials and Structures, 2003, 36 (3): 183-190. doi: 10.1007/BF02479556
    [8] BANTHIA N, GUPTA R. Plastic shrinkage cracking in cementitious repairs and overlays[J]. Materials and Structures, 2009, 42 (5): 567-579. doi: 10.1617/s11527-008-9403-9
    [9] MAALOUF M, KHOURY N, LAGUROS J G, et al. Support vector regression to predict the performance of stabilized aggregate bases subject to wet-dry cycles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36 (6): 675-696. doi: 10.1002/nag.1023
    [10] PENEV D, KAWAMURA M. Estimation of the spacing and the width of cracks caused by shrinkage in the cement-treated slab under restraint[J]. Cement and Concrete Research, 1993, 23 (4): 925-932. doi: 10.1016/0008-8846(93)90046-C
    [11] 曾梦澜, 罗迪, 吴超凡, 等. 不同级配类型水泥稳定碎石路面基层材料的抗裂性能[J]. 湖南大学学报: 自然科学版, 2013, 40 (10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201310001.htm

    ZENG Meng-lan, LUO Di, WU Chao-fan, et al. Anticracking properties of cement stabilized crushed stone pavement base materials of different aggregate structures[J]. Journal of Hunan University: Natural Sciences, 2013, 40 (10): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201310001.htm
    [12] 王宏畅, 黄晓明. 高等级沥青路面基层底裂缝三维数值分析[J]. 公路交通科技, 2005, 22 (12): 1-4. doi: 10.3969/j.issn.1002-0268.2005.12.001

    WANG Hong-chang, HUANG Xiao-ming. Three-dimensional numerical analysis for crack at bottom of asphalt pavement base course[J]. Journal of Highway and Transportation Research and Development, 2005, 22 (12): 1-4. (in Chinese). doi: 10.3969/j.issn.1002-0268.2005.12.001
    [13] 吴赣昌, 凌天清. 半刚性基层温缩裂缝的扩展机理分析[J]. 中国公路学报, 1998, 11 (1): 21-28. doi: 10.3321/j.issn:1001-7372.1998.01.004

    WU Gan-chang, LING Tian-qing. The analysis of developing mechanism of thermal crack of the semi-rigid roadbase[J]. China Journal of Highway and Transport, 1998, 11 (1): 21-28. (in Chinese). doi: 10.3321/j.issn:1001-7372.1998.01.004
    [14] 彭妙娟, 张登良, 夏永旭. 半刚性基层沥青路面的断裂力学计算方法及其应用[J]. 中国公路学报, 1998, 11 (2): 30-38. doi: 10.3321/j.issn:1001-7372.1998.02.005

    PENG Miao-juan, ZHANG Deng-liang, XIA Yong-xu. Computational method and its application of fracture mechanics for the asphalt pavement on semi-rigid type base course[J]. China Journal of Highway and Transport, 1998, 11 (2): 30-38. (in Chinese). doi: 10.3321/j.issn:1001-7372.1998.02.005
    [15] TIMM D H, GUZINA B B, VOLLER V R. Prediction of thermal crack spacing[J]. International Journal of Solids and Structures, 2003, 40 (1): 125-142. doi: 10.1016/S0020-7683(02)00496-1
    [16] ZHANG Peng, LI Qing-fu, LIU Chen-hui. Prediction of shrinkage cracking and corresponding cracking prevention measure of the semi-rigid base layer[J]. International Journal of Pavement Engineering, 2009, 10 (5): 383-388. doi: 10.1080/10298430802342781
    [17] XUAN D X, MOLENAAR A A A, HOUBEN L J M. Shrinkage cracking of cement treated demolition waste as a road base[J]. Materails and Structures, 2016, 49 (1): 631-640.
    [18] 林绣贤. 半刚性基层沥青路面的研究[J]. 中国公路学报, 1990, 3 (4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL802.004.htm

    LIN Xiu-xian. A study of the bituminous pavement with semi rigid base course[J]. China Journal of Highway and Transport, 1990, 3 (4): 1-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL802.004.htm
    [19] 郭寅川, 申爱琴, 何天钦, 等. 疲劳荷载和冻融循环耦合作用下路面混凝土微裂缝扩展行为[J]. 交通运输工程学报, 2016, 16 (5): 1-9. http://transport.chd.edu.cn/article/id/201605001

    GUO Yin-chuan, SHEN Ai-qin, HE Tian-qin, et al. Microcrack propagation behavior of pavement concrete subjected to coupling effect of fatigue load and freezing-thawing cycles[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (5): 1-9. (in Chinese). http://transport.chd.edu.cn/article/id/201605001
    [20] 邓学钧, 黄晓明, 杨军. 半刚性路面疲劳特性的环道试验研究[J]. 东南大学学报: 自然科学版, 1995, 25 (1): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX501.016.htm

    DENG Xue-jun, HUANG Xiao-ming, YANG Jun. The fatigue regular of semi-rigid base course[J]. Journal of Southeast University: Natural Science Edition, 1995, 25 (1): 94-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX501.016.htm
    [21] 高俊启, 施斌, 张巍, 等. 分布式光纤传感器用于桥梁和路面的健康监测[J]. 防灾减灾工程学报, 2005, 25 (1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200501002.htm

    GAO Jun-qi, SHI Bin, ZHANG Wei, et al. Application of distributed fiber optic sensor to bridge and pavement health monitoring[J]. Journal of Disaster Prevention and Mitigation Engineering, 2005, 25 (1): 14-19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200501002.htm
    [22] 钱振东, 黄卫, 关永胜, 等. BOTDA在沥青混凝土铺装层裂缝监测中的应用[J]. 东南大学学报: 自然科学版, 2008, 38 (5): 799-803. doi: 10.3321/j.issn:1001-0505.2008.05.012

    QIAN Zhen-dong, HUANG Wei, GUAN Yong-sheng, et al. Application of BOTDA on cracking monitoring for asphalt concrete pavement[J]. Journal of Southeast University: Natural Science Edition, 2008, 38 (5): 799-803. (in Chinese). doi: 10.3321/j.issn:1001-0505.2008.05.012
    [23] 钱振东, 韩光义, 黄卫, 等. 基于BOTDA的钢桥面铺装裂缝疲劳扩展研究[J]. 土木工程学报, 2009, 42 (10): 132-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200910021.htm

    QIAN Zhen-dong, HAN Guang-yi, HUANG Wei, et al. A study on crack fatigue propagation of steel deck pavement based on BOTDA[J]. China Civil Engineering Journal, 2009, 42 (10): 132-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200910021.htm
    [24] LIU Wan-qiu, WANG Hua-ping, ZHOU Zhi, et al. Optical fiber-based sensors with flexible encapsulation for pavement behavior monitoring[J]. Structural Control and Health Monitoring, 2015, 22 (2): 301-313.
    [25] 张登良, 郑南翔. 半刚性基层材料收缩抗裂性能研究[J]. 中国公路学报, 1991, 4 (1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199101003.htm

    ZHANG Deng-liang, ZHENG Nan-xiang. On the antishrinkage cracking performance of semi-rigid base course materials[J]. China Journal of Highway and Transport, 1991, 4 (1): 16-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199101003.htm
    [26] 胡青. 水泥稳定碎石混合料缩裂影响因素的试验研究[J]. 筑路机械与施工机械化, 2016, 33 (5): 67-70, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201605027.htm

    HU Qing. Experimental study on influencing factors of shrinkage and crack resistance properties of cement stabilized macadam[J]. Road Machinery and Construction Mechanization, 2016, 33 (5): 67-70, 75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201605027.htm
    [27] 延西利, 艾涛, 游庆龙, 等. 半刚性基层沥青路面的热传导试验特性延[J]. 长安大学学报: 自然科学版, 2016, 36 (5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201605001.htm

    YAN Xi-li, AI Tao, YOU Qing-long, et al. Experimental characteristics of heat conduction of semi-rigid base asphalt pavement[J]. Journal of Chang'an University: Natural Science Edition, 2016, 36 (5): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201605001.htm
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  656
  • HTML全文浏览量:  83
  • PDF下载量:  415
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-25
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回