留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预应力混杂碳/玻璃(C/G)纤维布加固RC梁的应力重分布

张剑 叶见曙 王景全 艾军 高琦

张剑, 叶见曙, 王景全, 艾军, 高琦. 预应力混杂碳/玻璃(C/G)纤维布加固RC梁的应力重分布[J]. 交通运输工程学报, 2017, 17(1): 45-52.
引用本文: 张剑, 叶见曙, 王景全, 艾军, 高琦. 预应力混杂碳/玻璃(C/G)纤维布加固RC梁的应力重分布[J]. 交通运输工程学报, 2017, 17(1): 45-52.
ZHANG Jian, YE Jian-shu, WANG Jing-quan, AI Jun, GAO Qi. Stress redistribution of RC beams strengthened with prestressed hybrid carbon/glass(C/G)fiber cloth[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 45-52.
Citation: ZHANG Jian, YE Jian-shu, WANG Jing-quan, AI Jun, GAO Qi. Stress redistribution of RC beams strengthened with prestressed hybrid carbon/glass(C/G)fiber cloth[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 45-52.

预应力混杂碳/玻璃(C/G)纤维布加固RC梁的应力重分布

基金项目: 

国家自然科学基金项目 11232007

交通运输部建设科技项目 2013 318 J19 590

江苏省自然科学基金项目 BK20130787

南京航空航天大学青年科技创新基金项目 NS2014003

详细信息
    作者简介:

    张剑(1978-), 男, 安徽青阳人, 南京航空航天大学副教授, 工学博士, 从事桥梁工程研究

  • 中图分类号: U443.3

Stress redistribution of RC beams strengthened with prestressed hybrid carbon/glass(C/G)fiber cloth

More Information
    Author Bio:

    ZHANG Jian(1978-), male, associate professor, PhD, +86-25-84892003, jianzhang78@126.com

  • 摘要: 基于实体退化单元, 对钢筋混凝土(RC) 梁和混杂碳/玻璃(C/G) 纤维布采用分层壳元模型, 对纵向受力钢筋采用组合壳元模型, 模拟了混杂C/G纤维布的预应力作用, 建立了预应力混杂C/G纤维布加固RC梁的非线性层壳组合单元模型, 采用弥散裂缝模式、Ottosen屈服准则和Hinton压碎准则描述了加固梁的开裂、屈服和压碎的材料非线性效应, 分析了破坏全过程中加固梁挠度变化规律、刚度折减规律、极限承载力与混杂C/G纤维布应力重分布。计算结果表明: 非线性层壳组合单元分析方法可靠, 加固梁的特征荷载计算值与试验值的相对误差不超过10%, 且非线性层壳组合单元具有较好的收敛性和数值稳定性; 在加固梁达到开裂荷载前, 混杂C/G纤维布的应力重分布系数变化较小, 开裂荷载时为1.3, 其后应力重分布系数逐渐增大, 屈服荷载时为4.1, 极限荷载时为14.8;采用普通C/G纤维布加固时, 纤维布高强性能未充分发挥, 利用率约为83%, 采用预应力C/G纤维布能改善梁的结构体系, 能使得材料充分发挥作用, 利用率超过90%。

     

  • 图  1  实体退化壳单元

    Figure  1.  Solid degraded shell element

    图  2  C/G纤维布加固RC梁的非线性层壳组合单元

    Figure  2.  Nonlinear layer shell combined element of RC beam strengthened with C/G fiber cloth

    图  3  试验梁尺寸与配筋

    Figure  3.  Sizes and reinforcement of test beam

    图  4  横截面A-A

    Figure  4.  Cross section A-A

    图  5  试验梁加载设置

    Figure  5.  Loading configuration of test beam

    图  6  非线性有限元模型

    Figure  6.  Nonlinear finite element model

    图  7  试件Ⅰ的荷载与挠度曲线

    Figure  7.  Load-deformation curves of beamⅠ

    图  8  试件Ⅱ的荷载与挠度曲线

    Figure  8.  Load-deformation curves of beamⅡ

    图  9  试件Ⅲ的荷载与挠度曲线

    Figure  9.  Load-deformation curves of beamⅢ

    图  10  特征荷载计算值

    Figure  10.  Computational data of characteristic loads

    图  11  加固梁的刚度折减系数

    Figure  11.  Stiffness reduction coefficients of strengthened beam

    图  12  受拉区纵筋应力曲线

    Figure  12.  Stress curves of longitudinal reinforcement in tensile region

    图  13  预应力混杂C/G纤维布应力曲线

    Figure  13.  Stress curves of prestressed hybrid C/G cloth

    图  14  预应力混杂C/G纤维布应力重分布系数

    Figure  14.  Stress redistribution coefficients of prestressed hybrid C/G cloth

    表  1  纤维布的有效预应变和有效预应力

    Table  1.   Efficient prestrains and prestresses of fiber cloths

    下载: 导出CSV

    表  2  预应力混杂C/G纤维布的应力重分布系数计算值

    Table  2.   Computation Values of stress redistribution coefficient of prestressed hybrid C/G cloth

    下载: 导出CSV
  • [1] 卢亦焱, 胡玲, 梁鸿骏, 等. CFRP布与钢板复合加固的钢筋混凝土梁受弯疲劳性能试验研究[J]. 建筑结构学报, 2015, 36 (11): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201511010.htm

    LU Yi-yan, HU Ling, LIANG Hong-jun, et al. Experimental research on flexural fatigue behavior of RC beams strengthened with combination of CFRP and steel plates[J]. Journal of Building Structures, 2015, 36 (11): 64-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201511010.htm
    [2] 江胜华, 侯建国, 何英明. 考虑预应力损失的CFRP布加固钢筋混凝土梁正常使用极限状态可靠度研究[J]. 土木工程学报, 2015, 48 (11): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201511006.htm

    JIANG Sheng-hua, HOU Jiang-guo, HE Ying-ming. Reliability research of serviceability limit states for RC beams strengthened with prestressed CFRP sheets considering prestress loss[J]. China Civil Engineering Journal, 2015, 48 (11): 36-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201511006.htm
    [3] 刘小燕, 颜东煌, 张峰, 等. 预应力高强混凝土梁极限承载力分析[J]. 中国公路学报, 2006, 19 (1): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200601011.htm

    LIU Xiao-yan, YAN Dong-huang, ZHANG Feng, et al. Ultimate load analysis of prestressed high strength concrete beam[J]. China Journal of Highway and Transport, 2006, 19 (1): 58-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200601011.htm
    [4] AL-HAMMOUD R, SOUDKI K, TOPPER T H. Fatigue flexural behavior of corroded reinforced concrete beams repaired with CFRP sheets[J]. Journal of Composites for Construction, 2011, 15 (1): 42-51. doi: 10.1061/(ASCE)CC.1943-5614.0000144
    [5] KURTZ S, BALAGURU P, HELM J. Experimental study of interfacial shear stresses in FRP-strengthened RC beams[J]. Journal of Composites for Construction, 2008, 12 (3): 312-322. doi: 10.1061/(ASCE)1090-0268(2008)12:3(312)
    [6] 薛伟辰, 郑乔文, 杨雨. 纤维塑料筋混凝土梁挠度的计算方法[J]. 水利学报, 2008, 39 (7): 883-888, 894. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200807017.htm

    XUE Wei-chen, ZHENG Qiao-wen, YANG Yu. Calculation method for deflection of concrete beams reinforced with FRP rebars[J]. Journal of Hydraulic Engineering, 2008, 39 (7): 883-888, 894. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200807017.htm
    [7] FRAGIACOMO M, AMADIO C, MACORINI L, et al. Finite-element model for collapse and long-term analysis of steel-concrete composite beams[J]. Journal of Structural Engineering, 2004, 130 (3): 489-497. doi: 10.1061/(ASCE)0733-9445(2004)130:3(489)
    [8] DENG Lin-zhong, GHOSN M, ZNIDARIC A, et al. Nonlinear flexural behavior of prestressed concrete girder bridges[J]. Journal of Bridge Engineering, 2001, 6 (4): 276-284. doi: 10.1061/(ASCE)1084-0702(2001)6:4(276)
    [9] SEBASTION W M, MECONNEL R E. Nonlinear FE analysis of steel-concrete composite structures[J]. Journal of Structural Engineering, 2000, 126 (6): 662-674. doi: 10.1061/(ASCE)0733-9445(2000)126:6(662)
    [10] CHUNG W, SOTELINO E D. Nonlinear finite-element analysis of composite steel girder bridges[J]. Journal of Structural Engineering, 2005, 131 (2): 304-313. doi: 10.1061/(ASCE)0733-9445(2005)131:2(304)
    [11] LEE W T, CHIOU Y J, SHIH M H. Reinforced concrete beam-column joint strengthened with carbon fiber reinforced polymer[J]. Composite Structures, 2010, 92 (1): 48-60. doi: 10.1016/j.compstruct.2009.06.011
    [12] 叶见曙, 张剑, 黄剑峰. 预应力混凝土多T梁桥的极限承载力[J]. 东南大学学报: 自然科学版, 2009, 39 (1): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200901021.htm

    YE Jian-shu, ZHANG Jian, HUANG Jian-feng. Analysis of ultimate loads of prestressed concrete multi-T girder bridge[J]. Journal of Southeast University: Natural Science Edition, 2009, 39 (1): 106-111. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200901021.htm
    [13] 张剑, 叶见曙, 张峰, 等. 基于混合壳单元法预应力混凝土T梁的受力性能[J]. 交通运输工程学报, 2007, 7 (4): 79-83. http://transport.chd.edu.cn/article/id/200704017

    ZHANG Jian, YE Jian-shu, ZHANG Feng, et al. Mechanical behavior of prestressed concrete T beam based on mixed shell element method[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (4): 79-83. (in Chinese). http://transport.chd.edu.cn/article/id/200704017
    [14] SEZEN H. Repair and strengthening of reinforced concrete beamcolumn joints with fiber-reinforced polymer composites[J]. Journal of Composites for Construction, 2012, 16 (5): 499-506.
    [15] 邓宗才, 李建辉. 混杂纤维布加固钢筋混凝土梁抗弯性能试验及理论研究[J]. 工程力学, 2009, 26 (2): 115-123, 130. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200902023.htm

    DENG Zong-cai, LI Jian-hui. Experimental and theoretical research on flexural performance of RC beams strengthened with hybrid fiber sheet[J]. Engineering Mechanics, 2009, 26 (2): 115-123, 130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200902023.htm
    [16] 王东, 艾军, 王军, 等. 预应力混杂CFRP/GFRP纤维布在混凝土桥梁加固中的关键技术研究[R]. 南京: 南京航空航天大学, 2013.

    WANG Dong, AI Jun, WANG Jun, et al. The key technical research in concrete bridge consolidation with prestressed hybrid CFRP/GFRP sheet[R]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese).
    [17] SHEN De-jian, DENG Shu-cheng, ZHANG Jin-yang, et al. Behavior of reinforced concrete box beam with initial cracks repaired with basalt fiber-reinforced polymer sheet[J]. Journal of Reinforced Plastics and Composites, 2015, 34 (18): 1540-1554.
    [18] 张峰. 预应力混凝土连续箱梁开裂后的结构行为研究[D]. 南京: 东南大学, 2007.

    ZHANG Feng. Research of structural behavior of PC continuous box girders[D]. Nanjing: Southeast University, 2007. (in Chinese).
    [19] MARI A R, OLLER E, BAIRAN J M, et al. Simplified method for the calculation of long-term deflections in FRPstrengthened reinforced concrete beams[J]. Composites Part B: Engineering, 2013, 45 (1): 1368-1376.
    [20] RAFI M M, NADJAI A. A suggested model for European code to calculate deflection of FRP reinforced concrete beams[J]. Magazine of Concrete Research, 2011, 63 (3): 197-214.
    [21] MIAS C, TORRES L, TURON A, et al. Effect of material properties on long-term deflections of GFRP reinforced concrete beams[J]. Construction and Building Materials, 2013, 41 (2): 99-108.
    [22] MIAS C, TORRES L, TURON A, et al. Experimental study of immediate and time-dependent deflections of GFRP reinforced concrete beams[J]. Composite Structures, 2013, 96 (4): 279-285.
    [23] KARA I F, DUNDAR C. Prediction of deflection of high strength steel fiber reinforced concrete beamsand columns[J]. Computers and Concrete, 2012, 9 (2): 133-151.
    [24] MOHAMED H M, MASMOUDI R. Deflection prediction of steel and FRP-reinforced concrete-filled FRP tube beams[J]. Journal of Composites for Construction, 2011, 15 (3): 462-472.
    [25] MARI A R, OLLER E, BAIRAN J M. Predicting the response of FRP-strengthened reinforced-concrete flexural members with nonlinear evolutive analysis models[J]. Journal of Composites for Construction, 2011, 15 (5): 799-809.
    [26] OUYANG Li-jun, LU Zhou-dao, CHEN Wei-zhen. Flexural experimental study on continuous reinforced concrete beams strengthened with basalt fiber reinforced polymer/plastic[J]. Journal of Shanghai Jiaotong University: Science, 2012, 17 (5): 613-618.
    [27] 李世秋, 汪厚植, 胡新民. 桥梁预应力钢筋混凝土结构耐久性影响因素及对策[J]. 筑路机械与施工机械化, 2007, 24 (6): 41-43, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX200706021.htm

    LI Shi-qiu, WANG Hou-zhi, HU Xin-min. Influencing factors on durability and counter measure of bridge prestressed concrete structure[J]. Road Machinery and Construction Mechanization, 2007, 24 (6): 41-43, 52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX200706021.htm
    [28] 王丹, 郭志昆, 邵飞, 等. 混杂纤维布加固轻骨料混凝土梁的试验研究[J]. 长安大学学报: 自然科学版, 2016, 36 (2): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201602008.htm

    WANG Dan, GUO Zhi-kun, SHAO Fei, et al. Experimental study on LC beams strengthened with hybrid fiber sheets[J]. Journal of Chang'an University: Natural Science Edition, 2016, 36 (2): 52-58. (in Chinese. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201602008.htm
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  63
  • PDF下载量:  484
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-10
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回