留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车转向架构架动应力计算与疲劳全寿命预测

卢耀辉 向鹏霖 曾京 陈天利

卢耀辉, 向鹏霖, 曾京, 陈天利. 高速列车转向架构架动应力计算与疲劳全寿命预测[J]. 交通运输工程学报, 2017, 17(1): 62-70.
引用本文: 卢耀辉, 向鹏霖, 曾京, 陈天利. 高速列车转向架构架动应力计算与疲劳全寿命预测[J]. 交通运输工程学报, 2017, 17(1): 62-70.
LU Yao-hui, XIANG Peng-lin, CENG Jing, CHEN Tian-li. Dynamic stress calculation and fatigue whole life prediction of bogie frame for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 62-70.
Citation: LU Yao-hui, XIANG Peng-lin, CENG Jing, CHEN Tian-li. Dynamic stress calculation and fatigue whole life prediction of bogie frame for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 62-70.

高速列车转向架构架动应力计算与疲劳全寿命预测

基金项目: 

国家自然科学基金项目 51275428

国家自然科学基金项目 U1334206

详细信息
    作者简介:

    卢耀辉(1973-), 男, 甘肃民勤人, 西南交通大学副教授, 工学博士, 从事车辆动力学研究

  • 中图分类号: U270.12

Dynamic stress calculation and fatigue whole life prediction of bogie frame for high-speed train

More Information
    Author Bio:

    LU Yao-hui(1973-), male, associate professor, PhD, +86-28-87634572, yhlu2000@swj

  • 摘要: 建立了车辆结构的刚柔耦合动力学模型, 对比了刚性构架和柔性构架的振动响应, 计算了构架的载荷谱; 分析了应力谱转化方法, 利用有限元方法与多项式拟合方法计算了构架的动应力谱; 基于动应力谱与相关标准, 运用线性累积损伤理论与疲劳裂纹扩展寿命Paris方程计算了构架的疲劳全寿命。计算结果表明: 相比于多刚体车辆系统动力学模型, 采用考虑构架柔性的车辆系统动力学模型计算的构架振动加速度响应在构架固有频率36.94~95.53Hz范围内的幅值较大, 因此, 构架的模态对振动响应的贡献显著; 将载荷谱转化为应力谱的多项式拟合方法与瞬态分析方法相比较, 应力误差最大值为1.16MPa, 相对最大误差为3%, 满足工程分析5%的计算精度要求; 基于疲劳损伤理论计算的可靠度为95%的构架疲劳寿命为1.82×106 km; 构架危险关注点裂纹由1mm扩展到2mm的寿命为1.76×106 km, 满足中国高速列车车辆检修标准中制定的五级检修周期为1.2×106 km的要求。可见, 构架模态参与下的动态应力谱计算方法与构架的疲劳全寿命预测方法可靠, 有益于构架的动态设计与维修周期的制定。

     

  • 图  1  构架有限元模型

    Figure  1.  Finite element model of bogie frame

    图  2  构架第1阶模态

    Figure  2.  First mode of bogie frame

    图  3  构架第2阶模态

    Figure  3.  Second mode of bogie frame

    图  4  构架第3阶模态

    Figure  4.  Third mode of bogie frame

    图  5  构架第4阶模态

    Figure  5.  Fourth mode of bogie frame

    图  6  构架第5阶模态

    Figure  6.  Fifth mode of bogie frame

    图  7  构架第6阶模态

    Figure  7.  Sixth mode of bogie frame

    图  8  车辆系统刚柔耦合动力学模型

    Figure  8.  Rigid-flexible coupling dynamics model of vehicle system

    图  9  轨道激励

    Figure  9.  Track excitations

    图  10  刚性和柔性构架垂向时域加速度对比

    Figure  10.  Comparison of vertical accelerations of rigid and flexible bogie frames in time domain

    图  11  刚性和柔性构架垂向频域加速度对比

    Figure  11.  Comparison of vertical accelerations of rigid and flexible bogie frames in frequency domain

    图  12  刚性和柔性构架横向时域加速度对比

    Figure  12.  Comparison of lateral accelerations of rigid and flexible bogie frames in time domain

    图  13  刚性和柔性构架横向频域加速度对比

    Figure  13.  Comparison of lateral accelerations of rigid and flexible bogie frames in frequency domain

    图  14  刚性和柔性构架空簧位置的载荷时间历程

    Figure  14.  Load-time histories of rigid and flexible bogie frames on air spring

    图  15  构架有限元模型的边界条件

    Figure  15.  Boundary condition of finite element model for bogie frame

    图  16  动应力的瞬态计算结果与拟合结果对比

    Figure  16.  Comparison of transient calculation and fitting results for dynamic stress

    图  17  节点73043上表面应力差值块谱

    Figure  17.  Stress range spectrum blocks on upper surface of node 73043

    图  18  节点73043下表面应力差值块谱

    Figure  18.  Stress range spectrum blocks on lower surface of node 73043

    图  19  S-N曲线

    Figure  19.  S-N curves

    图  20  节点73043上表面雨流计数结果

    Figure  20.  Rainflow counting result on upper surface of node 73043

    图  21  节点73043下表面雨流计数结果

    Figure  21.  Rainflow counting result on lower surface of node 73043

    表  1  构架模态分析结果

    Table  1.   Analysis result of bogie frame modes

    下载: 导出CSV
  • [1] HAN J W, KIM J D, SONG S Y. Fatigue strength evaluation of a bogie frame for urban maglev train with fatigue test on full-scale test rig[J]. Engineering Failure Analysis, 2013, 31 (7): 412-420.
    [2] DIETZ S, NETTER H, SACHAU D. Fatigue life prediction of a railway bogie under dynamic loads through simulation[J]. Vehicle System Dynamics, 1998, 29 (6): 385-402. doi: 10.1080/00423119808969381
    [3] KIM J S. Fatigue assessment of tilting bogie frame for Korean tilting train: analysis and static tests[J]. Engineering Failure Analysis, 2006, 13 (8): 1326-1337. doi: 10.1016/j.engfailanal.2005.10.007
    [4] LUC"ANIN V J, SIMIC Gî, MILKOVIC D D, et al. Calculated and experimental analysis of cause of the appearance of cracks in the running bogie frame of diesel multiple units of Serbian railways[J]. Engineering Failure Analysis, 2010, 17 (1): 236-248. doi: 10.1016/j.engfailanal.2009.06.011
    [5] 孟广伟, 王成国, 刘敬辉, 等. 用虚拟疲劳样机技术分析转8A型转向架侧架的疲劳寿命[J]. 中国铁道科学, 2002, 23 (4): 8-11. doi: 10.3321/j.issn:1001-4632.2002.04.002

    MENG Guang-wei, WANG Cheng-guo, LIU Jing-hui, et al. Analysis of fatigue life of Z8A bogie sideframe with virtual prototype technology[J]. China Railway Science, 2002, 23 (4): 8-11. (in Chinese). doi: 10.3321/j.issn:1001-4632.2002.04.002
    [6] 卢耀辉, 曾京, 邬平波. 铁道货车转8A侧架可靠性疲劳寿命预测[J]. 大连交通大学学报, 2008, 29 (5): 34-39. doi: 10.3969/j.issn.1673-9590.2008.05.007

    LU Yao-hui, ZENG Jing, WU Ping-bo. Study on reliability fatigue life of Zhuan8Atype side frame of railway freight car bogie[J]. Journal of Dalian Jiaotong University, 2008, 29 (5): 34-39. (in Chinese). doi: 10.3969/j.issn.1673-9590.2008.05.007
    [7] 李凡松, 邬平波, 曾京, 等. 构架三种常用疲劳强度校核方法对比研究[J]. 机械工程学报, 2014, 50 (14): 170-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414028.htm

    LI Fan-song, WU Ping-bo, ZENG Jing, et al. Study on the differences between the three common fatigue strength analysis methods for bogie frame[J]. Journal of Mechanical Engineering, 2014, 50 (14): 170-176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414028.htm
    [8] VOGT M, DILGER K, KASSNER M. Investigations on different fatigue design concepts using the example of a welded crossbeam connection from the underframe of a steel railcar body[J]. International Journal of Fatigue, 2012, 34 (1): 47-56. doi: 10.1016/j.ijfatigue.2011.01.017
    [9] ESDERTS A, WILLEN J, KASSNER M. Fatigue strength analysis of welded joints in closed steel sections in rail vehicles[J]. International Journal of Fatigue, 2012, 34 (1): 112-121. doi: 10.1016/j.ijfatigue.2011.06.007
    [10] RADAJ D, SONSINO C M, FRICKE W. Recent developments in local concepts of fatigue assessment of welded joints[J]. International Journal of Fatigue, 2009, 31 (1): 2-11. doi: 10.1016/j.ijfatigue.2008.05.019
    [11] HOBBACHER A F. The new IIW recommendations for fatigue assessment of welded joints and components-a comprehensive code recently updated[J]. International Journal of Fatigue, 2009, 31 (1): 50-58. doi: 10.1016/j.ijfatigue.2008.04.002
    [12] 文强. 国内外高速列车检修制度综述[J]. 国外铁道车辆, 2014, 51 (2): 1-3, 46. doi: 10.3969/j.issn.1002-7610.2014.02.001

    WEN Qiang. Survey of the inspection and repair system for high speed trains in china and abroad[J]. Foreign Rolling Stock, 2014, 51 (2): 1-3, 46. (in Chinese). doi: 10.3969/j.issn.1002-7610.2014.02.001
    [13] 黄小平, 贾贵磊, 崔维成, 等. 海洋钢结构疲劳裂纹扩展预报单一扩展率曲线模型[J]. 船舶力学, 2011, 15 (1/2): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX2011Z1017.htm

    HUANG Xiao-ping, JIA Gui-lei, CUI Wei-cheng, et al. Unique crack growth rate curve model for fatigue life prediction of marine steel structures[J]. Journal of Ship Mechanics, 2011, 15 (1/2): 118-125. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX2011Z1017.htm
    [14] DONG P. A robust structural stress method for fatigue analysis of offshore/marine structures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2005, 127 (1): 68-74. doi: 10.1115/1.1854698
    [15] 兆文忠, 李季涛, 方吉. 轨道车辆焊接结构抗疲劳设计过程中的认识误区[J]. 大连交通大学学报, 2016, 37 (5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201605001.htm

    ZHAO Wen-zhong, LI Ji-tao, FANG Ji. Misunderstanding in anti-fatigue design process of railway vehicles welded structure[J]. Journal of Dalian Jiaotong University, 2016, 37 (5): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201605001.htm
    [16] FU De-long, WANG Wen-jing, DONG Lei. Analysis on the fatigue cracks in the bogie frame[J]. Engineering Failure Analysis, 2015, 58: 307-319. doi: 10.1016/j.engfailanal.2015.09.004
    [17] 王炳英, 霍立兴, 张玉凤, 等. 基于BS7910含缺陷X80钢焊接管道的安全评定[J]. 机械强度, 2012, 34 (4): 621-624. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201204028.htm

    WANG Bing-ying, HUO Li-xing, ZHANG Yu-feng, et al. Safety assessment of X80 steel pipe with flaws based on BS7910[J]. Journal of Mechanical Strength, 2012, 34 (4): 621-624. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201204028.htm
    [18] 缪炳荣, 张卫华, 肖守讷, 等. 机车车辆车体结构动应力计算方法[J]. 交通运输工程学报, 2007, 7 (6): 17-20, 40. doi: 10.3321/j.issn:1671-1637.2007.06.004

    MIAO Bing-rong, ZHANG Wei-hua, XIAO Shou-ne, et al. Dynamic stress calculation method of locomotive and vehicle carbody structures[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (6): 17-20, 40. (in Chinese). doi: 10.3321/j.issn:1671-1637.2007.06.004
    [19] 王开云, 翟婉明, 蔡成标. 秦沈客运专线轨道谱与德国轨道谱的比较[J]. 西南交通大学学报, 2007, 42 (4): 425-430. doi: 10.3969/j.issn.0258-2724.2007.04.008

    WANG Kai-yun, ZHAI Wan-ming, CAI Cheng-biao. Comparison on track spectra of Qinghuangdao-Shenyang passenger railway line and German railway line[J]. Journal of Southwest Jiaotong University, 2007, 42 (4): 425-430. (in Chinese). doi: 10.3969/j.issn.0258-2724.2007.04.008
    [20] LU Yao-hui, ZENG Jing, WU Ping-bo, et al. Modeling of rigid-flexible coupling system dynamics for railway vehicles with flexible bogie frame[C]//IEEE. 2009 Fourth International Conference on Innovative Computing, Information and Control. New York: IEEE, 2009: 1355-1360.
    [21] 卢耀辉. 铁道客车转向架焊接构架疲劳可靠性研究[D]. 成都: 西南交通大学, 2011.

    LU Yao-hui. Study on fatigue reliability of welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese).
    [22] 卢耀辉, 冯振, 曾京, 等. 高速列车车体动应力分析方法及寿命预测研究[J]. 铁道学报, 2016, 38 (9): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609005.htm

    LU Yao-hui, FENG Zhen, ZENG Jing, et al. Research on dynamic stress analysis methods and prediction of fatigue life for carbody of high speed train[J]. Journal of the China Railway Society, 2016, 38 (9): 31-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609005.htm
    [23] 缪炳荣, 阳光武, 肖守讷, 等. 机车车辆结构疲劳寿命预测方法的研究[J]. 铁道机车与动车, 2005 (11): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX200511000.htm

    MIAO Bing-rong, YANG Guang-wu, XIAO Shou-ne, et al. Research in locomotive and vehicle structure's fatigue life prediction methods[J]. Diesel Locomotives, 2005 (11): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX200511000.htm
    [24] 肖守讷, 李华丽, 阳光武, 等. 轮轨冲击对构架疲劳的影响[J]. 交通运输工程学报, 2008, 8 (3): 6-9. http://transport.chd.edu.cn/article/id/200803002

    XIAO Shou-ne, LI Hua-li, YANG Guang-wu, et al. Influence of wheel-rail impact on fatigue of bogie frame[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (3): 6-9. (in Chinese). http://transport.chd.edu.cn/article/id/200803002
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  1030
  • HTML全文浏览量:  271
  • PDF下载量:  811
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-20
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回