留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车纵向动力学模型时变参数在线辨识方法

谢国 张丹 黑新宏 钱富才 曹源 蔡伯根 高橋聖 望月宽

谢国, 张丹, 黑新宏, 钱富才, 曹源, 蔡伯根, 高橋聖, 望月宽. 高速列车纵向动力学模型时变参数在线辨识方法[J]. 交通运输工程学报, 2017, 17(1): 71-81.
引用本文: 谢国, 张丹, 黑新宏, 钱富才, 曹源, 蔡伯根, 高橋聖, 望月宽. 高速列车纵向动力学模型时变参数在线辨识方法[J]. 交通运输工程学报, 2017, 17(1): 71-81.
XIE Guo, ZHANG Dan, HEI Xin-hong, QIAN Fu-cai, CAO Yuan, CAI Bo-gen, GAO Qiao-sheng, WANG Yue-kuan. Online identification method of time-varying parameters for longitudinal dynamics model of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 71-81.
Citation: XIE Guo, ZHANG Dan, HEI Xin-hong, QIAN Fu-cai, CAO Yuan, CAI Bo-gen, GAO Qiao-sheng, WANG Yue-kuan. Online identification method of time-varying parameters for longitudinal dynamics model of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 71-81.

高速列车纵向动力学模型时变参数在线辨识方法

基金项目: 

国家自然科学基金项目 U1534208

国家自然科学基金项目 U1334211

陕西省青年科技新星计划项目 2016KJXX-79

陕西省科技统筹创新工程计划项目 2015KTZDGY01-04

详细信息
    作者简介:

    谢国(1982-), 男, 湖北宜昌人, 西安理工大学副教授, 工学博士, 从事轨道交通系统研究

  • 中图分类号: U270.11

Online identification method of time-varying parameters for longitudinal dynamics model of high-speed train

More Information
    Author Bio:

    XIE Guo(1982-), male, associate professor, PhD, +86-29-82312006, guoxie@xaut.edu.cn

  • 摘要: 针对高速列车纵向动力学特性, 分析了牵引力、制动力、阻力与速度和加速度的关系; 考虑了天气和线路对高速列车运行状态造成的随机干扰, 以及机械磨损和运行环境对列车模型结构参数造成的随机影响, 建立了噪声干扰下的高速列车纵向动力学参数化状态空间模型, 利用期望极大化准则, 计算了列车模型参数的条件数学期望, 并结合粒子滤波理论估计了参数粒子下的列车状态; 基于贝叶斯后验概率理论, 建立了高速列车非线性动力学模型的时变参数辨识方法, 估计了列车的实时状态, 并在噪声与参数分布均属于高斯分布、噪声属于高斯分布与参数属于指数分布、噪声属于伽玛分布与参数属于高斯分布的3种工况下, 进行了蒙特卡洛仿真试验。仿真结果表明: 在3种工况下, 高速列车位移和速度的估计值与真实值的相对误差小于5%, 列车模型参数估计值与真实值的相对误差小于10%, 满足实际系统需求, 因此, 在高斯或伽玛噪声的干扰下, 针对给定概率分布的时变参数, 本方法均能实现系统状态的估计和模型参数的辨识。

     

  • 图  1  时变参数辨识流程

    Figure  1.  Identification flowchart of time-varying parameters

    图  2  CRH2和CRH3型动车组牵引力曲线

    Figure  2.  Traction curves of CRH2and CRH3

    图  3  CRH2和CRH3型动车组阻力曲线

    Figure  3.  Resistance curves of CRH2and CRH3

    图  4  高斯噪声和高斯分布参数下列车位移曲线

    Figure  4.  Displacement curves of train with Gaussian noise and Gaussian distribution parameters

    图  5  高斯噪声和高斯分布参数下列车速度曲线

    Figure  5.  Velocity curves of train with Gaussian noise and Gaussian distribution parameters

    图  6  高斯噪声下高斯分布参数辨识结果

    Figure  6.  Identification results of Gaussian distribution parameters under Gaussian noise

    图  7  高斯噪声和指数分布参数下列车位移曲线

    Figure  7.  Displacement curves of train with Gaussian noise and exponential distribution parameters

    图  8  高斯噪声和指数分布参数下列车速度曲线

    Figure  8.  Velocity curves of train with Gaussian noise and exponential distribution parameters

    图  9  高斯噪声下指数分布参数的辨识结果

    Figure  9.  Identification results of exponential distribution parameters under Gaussian noise

    图  10  伽玛噪声和高斯分布参数下CRH2型动车组的位移曲线

    Figure  10.  Displacement curves of CRH2with Gamma noise and Gaussian distribution parameters

    图  11  伽玛噪声和高斯分布参数下CRH2型动车组的速度曲线

    Figure  11.  Velocity curves of CRH2with Gamma noise and Gaussian distribution parameters

    图  12  伽玛噪声和高斯分布参数下CRH3型动车组位移曲线

    Figure  12.  Displacement curves of CRH3with Gamma noise and Gaussian distribution parameters

    图  13  伽玛噪声和高斯分布参数下CRH3型动车组速度曲线

    Figure  13.  Velocity curves of CRH3with Gamma noise and Gaussian distribution parameters

    表  1  基本阻力系数

    Table  1.   Basic resistance coefficients

    下载: 导出CSV

    表  2  回转质量系数

    Table  2.   Rotary quality coefficients

    下载: 导出CSV

    表  3  基本阻力计算公式

    Table  3.   Calculation formulas of basic resistances

    下载: 导出CSV

    表  4  主要参数

    Table  4.   Main parameters

    下载: 导出CSV
  • [1] SONG Qi, SONG Yong-duan, TANG Tao, et al. Computationally inexpensive tracking control of high-speed trains with traction/braking saturation[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12 (4): 1116-1125. doi: 10.1109/TITS.2011.2143409
    [2] SONG Qi, SONG Yong-duan. Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures[J]. IEEE Transactions on Neural Networks, 2011, 22 (12): 2250-2261. doi: 10.1109/TNN.2011.2175451
    [3] 衷路生, 李兵, 龚锦红, 等. 高速列车非线性模型的极大似然辨识[J]. 自动化学报, 2014, 40 (12): 2950-2958. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201412028.htm

    ZHONG Lu-sheng, LI Bing, GONG Jin-hong, et al. Maximum likelihood identification of nonlinear models for high speed trains[J]. ACTA Automatic Sinica, 2014, 40 (12): 2950-2958. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201412028.htm
    [4] 杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45 (1): 217-460. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htm

    YANG Guo-wei, WEI Yu-jie, ZHAO Gui-lin, et al. Research progress on the mechanics of high speed rails[J]. Advances In Mechanics, 2015, 45 (1): 217-460. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htm
    [5] 丁建明, 林建辉, 王晗, 等. 基于边缘粒子滤波的高速列车性能参数估计方法[J]. 交通运输工程学报, 2014, 14 (3): 52-57. doi: 10.3969/j.issn.1671-1637.2014.03.011

    DING Jian-ming, LIN Jian-hui, WANG Han, et al. Performance parameter estimation method of high-speed train based on Rao-Blackwellised particle filter[J]. Journal of traffic and Transportation Engineering, 2014, 14 (3): 52-57. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.03.011
    [6] 韩鹏, 张卫华, 李艳, 等. 轮对磨损与轮径差对高速列车动力学性能的影响[J]. 交通运输工程学报, 2013, 13 (6): 47-83. doi: 10.3969/j.issn.1671-1637.2013.06.007

    HAN Peng, ZHNAG Wei-hua, LI Yan, et al. Influence of wheelset wear and wheel radius difference on dynamics performances of high-speed train[J]. Journal of traffic and Transportation Engineering, 2013, 13 (6): 47-83. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.06.007
    [7] 陈哲明, 曾京. 牵引电机转子振动对高速列车动力学性能的影响[J]. 交通运输工程学报, 2011, 28 (1): 238-244. http://transport.chd.edu.cn/article/id/201306007

    CHEN Zhe-ming, CENG Jing. Effect of rotor vibration of Traction motor on dynamic behavior of high speed train[J]. Journal of traffic and Transportation Engineering, 2011, 28 (1): 238-244. (in Chinese). http://transport.chd.edu.cn/article/id/201306007
    [8] DING Feng, LIU P X, LIU Guang-jun. Multiinnovation least-squares identification for system modeling[J]. IEEETransactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40 (3): 767-778. doi: 10.1109/TSMCB.2009.2028871
    [9] KIM Y, MALLICK R, BHOWMICK S, et al. Nonlinear system identification of large-scale smart pavement systems[J]. Expert Systems with Applications, 2013, 40 (9): 3551-3560. doi: 10.1016/j.eswa.2012.12.062
    [10] DING F, CHEN Tong-wen. Identiflcation of Hammerstein nonlinear ARMAX systems[J]. Automatica, 2005, 41 (9): 1479-1489. doi: 10.1016/j.automatica.2005.03.026
    [11] 郭红戈, 谢克明. 动车组列车制动系统的Hammerstein模型及其参数辨识方法[J]. 铁道学报, 2014, 36 (4): 48-53. doi: 10.3969/j.issn.1001-8360.2014.04.009

    GUO Hong-ge, XIE Ke-ming. Hammerstein model and parameters identification of EMU braking system[J]. Journal of the China Railway Society, 2014, 36 (4): 48-53. (in Chinese). doi: 10.3969/j.issn.1001-8360.2014.04.009
    [12] 陈德旺, 唐涛, 郜春海, 等. 城轨列车在车站停车误差估计模型与在线学习算法的研究[J]. 中国铁道科学, 2010, 31 (6): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201006023.htm

    CHEN De-wang, TANG Tao, GAO Chun-hai, et al. Research on the error estimation models and online learning algorithms for train station parking in urban rail transit[J]. China Railway Science, 2010, 31 (6): 122-127. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201006023.htm
    [13] 于振宇, 陈德旺. 城轨列车制动模型及参数辨识[J]. 铁道学报, 2011, 33(10): 37-40. doi: 10.3969/j.issn.1001-8360.2011.10.007

    YU Zhen-yu, CHEN De-wang, Modeling and system identification of the braking system of urban rail vehicles[J]. Journal of the China Railway Society, 2011, 33(10): 37-40. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.10.007
    [14] 郜春海, 陈德旺. 基于模型选择和优化技术的自动驾驶制动模型辨识研究[J]. 铁道学报, 2011, 33 (10): 57-60. doi: 10.3969/j.issn.1001-8360.2011.10.011

    GAO Chun-hai, CHEN De-wang. Study on ATO braking model identification based on model selection and optimization techniques[J]. Journal of the China Railway Society, 2011, 33 (10): 57-60. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.10.011
    [15] 王呈. 列车自动驾驶控制模型参数辨识及其应用[D]. 北京: 北京交通大学, 2014.

    WANG Cheng. Parameter identification and its application in automatic train operation control[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese).
    [16] Zhang J, Ding G F, Zhou Y S, et al. Identification of key design parameters of high-speed train for optimal design[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73 (1): 251-265.
    [17] WANG D Q. Least squares-based recursive and iterative estimation for output error moving average systems using data filtering[J]. IET Control Theory and Applications, 2011, 5 (14): 1648-1657. doi: 10.1049/iet-cta.2010.0416
    [18] XIE Li, YANG Hui-zhong, DING Feng. Recursive least squares parameter estimation for non-uniformly sampled systems based on the data filtering[J]. Mathematical and Computer Modelling: An International Journal, 2011, 54 (1/2): 315-324.
    [19] CHOU M, XIA X, KAYSER C. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems[J]. Control Engineering Practice, 2007, 15 (4): 501-509. doi: 10.1016/j.conengprac.2006.09.006
    [20] 衷路生, 李兵, 龚锦红, 等. 高速动车组多质点模型的极大似然辨识[J]. 计算机仿真, 2016, 33 (1): 181-187. doi: 10.3969/j.issn.1006-9348.2016.01.039

    ZHONG Lu-sheng, LI Bing, GONG Jin-hong, et al. Maximum likelihood identification of multiple point model for high-speed electrical multiple units[J]. Computer Simulation, 2016, 33 (1): 181-187. (in Chinese). doi: 10.3969/j.issn.1006-9348.2016.01.039
    [21] 杨辉, 张坤鹏, 王昕. 高速动车组多模型切换主动容错预测控制[J]. 控制理论与应用, 2012, 29 (9): 1211-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201209018.htm

    YANG Hui, ZHANG Kun-peng, WANG Xin. Multi-model switching predictive control with active fault tolerance for high-speed train[J]. Control Theory and Applications, 2012, 29 (9): 1211-1214. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201209018.htm
    [22] ANDRIEU C, DOUCET A, TADIC V. On-line parameter estimation in generalstate-space models[C]//IEEE. The 44th Conference on Decision and Control. New York: IEEE, 2006: 332-337.
    [23] SHAWASH J, SELVIAH D R. Real-time nonlinear parameter estimation using the Levenberg-Marquardt algorithm on field programmable gate arrays[J]. IEEE Transactions on Industrial Electronics, 2013, 60 (1): 170-176. doi: 10.1109/TIE.2012.2183833
    [24] ALTMANN Y, PEREYRA M, MCLAUGHLIN S. Bayesian nonlinear hyperspectral unmixing with spatial residual component analysis[J]. IEEE Transactions on Computational Imaging, 2015, 1 (3): 174-185. doi: 10.1109/TCI.2015.2481603
    [25] LINDSTEN F. An efficient stochastic approximation EMalgorithm using conditional particle filters[C]//IEEE. 2013IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE, 2013: 6274-6278.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  175
  • PDF下载量:  623
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-11
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回