Pole shoe abrasion calculation method of electromagnetic track brake under emergency braking condition
-
摘要: 为了预测极靴服务寿命, 确保制动可靠, 通过磨损过程、制动过程、制动器/钢轨温度场的建模与仿真, 计算了高速列车紧急制动过程中电磁式磁轨制动器极靴磨损量; 建立了考虑速度与温度的Archard磨损模型和CRH2列车紧急制动过程的动力学模型, 计算了电磁式磁轨制动器样机全程参与制动时的空气制动力、电磁制动力、制动减速度、紧急制动能量分配系数、瞬时速度和制动距离等时变参数; 分析了紧急制动时电磁式磁轨制动器-钢轨-大气间的热量传递, 基于Fluent软件建立了制动器/钢轨的三维温度场模型, 根据制动过程时变参数获取温度场热流密度和散热加载条件; 针对CRH2列车行驶速度为250km·h-1的紧急制动工况, 计算了制动器极靴的磨损量。计算结果表明: 在制动过程中, 钢轨顶部温度随着与制动器的接触状态变化呈波动变化, 在距离有效制动起点1 620m处, 钢轨与8号电磁式磁轨制动器接触结束时, 温度达到最大值570.76℃; CRH2列车同侧8个制动器极靴底部在制动时间为24.5s时温度达到最大值, 从前到后依次为1 022.6℃、1 037.7℃、1 045.3℃、1 052.8℃、1 085.7℃、1 100.9℃、1 109.2℃、1 124.4℃, 极靴磨损量从前到后依次为207.4、208.7、210.0、210.7、212.1、213.4、214.4、215.5g。可见, 制动器工作会使钢轨产生热量积累, 导致列车运行方向后面的电磁式磁轨制动器极靴温度较高, 磨损量较大。Abstract: To predict the service lives of pole shoes and ensure brake reliability, the pole shoe abrasion losses of electromagnetic track brakes (ETBs) during emergency brake of high-speed train were calculated through modeling and simulation of abrasion process, braking process and temperature field of brakes and rail.The Archard abrasion model considering speed and temperature and the dynamics model for emergency braking process of CRH2 train were built.Time-varying parameters including air braking force, electromagnetic braking force, brakingdeceleration, energy distribution coefficient of emergency braking, instantaneous speed and braking distance were calculated during the process of test ETBs'whole-process works.The heat transfer among ETBs, rail and atmosphere during emergency brake was analyzed, a 3D temperature field model of brakes and rail was established by using Fluent software.The heat flux of temperature field and the heat dissipation loading condition were obtained according to the time-varying parameters during braking process.The pole shoe abrasion losses of brakes were calculated during emergency braking process of CRH2 train with the running speed of 250km·h-1.Calculation result shows that the temperature of rail top displays fluctuation changes according to the contact conditions between brakes and rail.The maximum temperature reaches 570.76 ℃in the spot with 1 620 mfrom brake start when the contact between rail and No.8ETB ends.When the active braking time is 24.5s, the maximum temperatures of pole shoes bottoms of those same-side eight ETBs in CRH2 train are 1 022.6℃, 1 037.7℃, 1 045.3, 1 052.8℃, 1 085.7℃, 1 100.9 ℃, 1 109.2 ℃, 1 124.4 ℃in order from front to rear, and the abrasion losses of ETBs pole shoes are 207.4, 208.7, 210.0, 210.7, 212.1, 213.4, 214.4, 215.5g.So, the heat accumulation of rail generates during working process of brakes, which will lead to the higher temperature and larger abrasion losses of latter ETBs'pole shoes in train running direction.
-
表 1 网格划分参数
Table 1. Mesh generation parameters
表 2 极靴磨损计算参数
Table 2. Calculation parameters of pole shoe abrasion loss
表 3 电磁式磁轨制动器参数
Table 3. Parameters of ETB
表 4 紧急制动全程中极靴的磨损量
Table 4. Abrasion losses of pole shoes during emergency braking process
-
[1] 李瑞淳, 白雪寒. 世界高速铁路电动车组新技术的运用[J]. 国外铁道车辆, 2008, 45 (4): 1-6. doi: 10.3969/j.issn.1002-7610.2008.04.001LI Rui-chun, BAI Xue-han. Application of new technologies for high speed railway EMUs in the world[J]. Foreign Rolling Stock, 2008, 45 (4): 1-6. (in Chinese). doi: 10.3969/j.issn.1002-7610.2008.04.001 [2] HERMAN D. All aboard for high-speed rail[J]. Mechanical Engineering, 1996, 118 (9): 94-97. [3] 刘汝让. 磁轨制动及其作用原理[J]. 机车车辆工艺, 2001 (5): 1-4. doi: 10.3969/j.issn.1007-6034.2001.05.001LIU Ru-rang. Magnetic track braking and its work principle[J]. Locomotive and Rolling Stock Technology, 2001 (5): 1-4. (in Chinese). doi: 10.3969/j.issn.1007-6034.2001.05.001 [4] 高振山, 邓效忠, 陈拂晓, 等. 基于修正Archard理论的螺旋锥齿轮锻造模具寿命预测[J]. 中国机械工程, 2014, 25 (2): 226-229. doi: 10.3969/j.issn.1004-132X.2014.02.017GAO Zhen-shan, DENG Xiao-zhong, CHEN Fu-xiao, et al. Die service life estimation based on modified Archard method in forging spiral bevel gear[J]. China Mechanical Engineering, 2014, 25 (2): 226-229. (in Chinese). doi: 10.3969/j.issn.1004-132X.2014.02.017 [5] ARCHARD J F, HIRST W. The wear of metals under unlubricated conditions[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1956, 236 (1206): 397-410. [6] PDRA P, ANDERSSON S. Simulating sliding wear with finite element method[J]. Tribology International, 1999, 32 (2): 71-81. doi: 10.1016/S0301-679X(99)00012-2 [7] MYSHKIN N K, PETROKOVETS M I, CHIZHIK S A. Simulation of real contact in tribology[J]. Tribology International, 1998, 31 (1-3): 79-86. doi: 10.1016/S0301-679X(98)00010-3 [8] BURWELL JR J T. Survey of possible wear mechanisms[J]. Wear, 1957, 1 (2): 119-141. doi: 10.1016/0043-1648(57)90005-4 [9] 李骏. SXZ1032车离合器摩擦片磨损量的理论估算[J]. 华东交通大学学报, 1999, 16 (4): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT199904010.htmLI Jun. Theoretical calculation of wear value of clutch friction disc for truck SXZ1032[J]. Journal of East China Jiaotong University, 1999, 16 (4): 48-51. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT199904010.htm [10] 张学勇, 刘沃野, 陶凤和, 等. 离合器摩擦片长期磨损规律研究[J]. 润滑与密封, 2002, 25 (5): 44-45. doi: 10.3969/j.issn.0254-0150.2002.05.021ZHANG Xue-yong, LIU Wo-ye, TAO Feng-he, et al. A study on the wear-rules of the friction disk[J]. Lubrication Engineering, 2002, 25 (5): 44-45. (in Chinese). doi: 10.3969/j.issn.0254-0150.2002.05.021 [11] 林纲, 谢敬佩, 杨茹萍, 等. 疲劳磨损和压碎磨损的应力计算[J]. 洛阳工学院学报, 1994, 15 (3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX403.002.htmLIN Gang, XIE Jing-pei, YANG Ru-ping, et al. Stress computation of fatigue wear and the pressure breakage wear[J]. Journal of Luoyang Institute of Technology, 1994, 15 (3): 13-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX403.002.htm [12] 严立, 徐久军, 潘新祥. 磨损问题的仿真求解研究[J]. 摩擦学学报, 1999, 19 (1): 50-55. doi: 10.3321/j.issn:1004-0595.1999.01.010YAN Li, XU Jiu-jun, PAN Xin-xiang. Research on the simulation method of wear process[J]. Tribology, 1999, 19 (1): 50-55. (in Chinese). doi: 10.3321/j.issn:1004-0595.1999.01.010 [13] ALEKSENDRIC D, CIROVIC V. Effect of friction material manufacturing conditions on its wear[J]. SAE Technical Papers, DOI: 10.4271/2010-01-1679 [14] 林高用, 冯迪, 郑小燕, 等. 基于Archard理论的挤压次数对模具磨损量的影响分析[J]. 中南大学学报: 自然科学版, 2009, 40 (5): 1245-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200905015.htmLIN Gao-yong, FENG Di, ZHENG Xiao-yan, et al. Analysis of influence of extrusion times on total die wear based on Archard theory[J]. Journal of Central South University: Science and Technology, 2009, 40 (5): 1245-1251. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200905015.htm [15] GLAESER W A. Friction and wear[J]. IEEE Transactions on Parts, Hybrids, and Packaging, 1971, 7 (2): 99-105. doi: 10.1109/TPHP.1971.1136416 [16] 邵朋朋, 傅茂海, 周元, 等. 基于Archard模型的重载铁路货车车轮磨耗研究[J]. 铁道机车车辆, 2012, 32 (2): 42-45, 57. doi: 10.3969/j.issn.1008-7842.2012.02.011SHAO Peng-peng, FU Mao-hai, ZHOU Yuan, et al. Research on the evaluation of wheel-rail wear of heavy haul railway based on Archard's model[J]. Railway Locomotive and Car, 2012, 32 (2): 42-45, 57. (in Chinese). doi: 10.3969/j.issn.1008-7842.2012.02.011 [17] 程迪, 程海涛. CRH2动车组动力学性能分析[J]. 机车电传动, 2010 (3): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201003005.htmCHENG Di, CHENG Hai-tao. Dynamics analysis for CRH2EMUs[J]. Electric Drive for Locomotives, 2010 (3): 13-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201003005.htm [18] 金学松, 温泽峰, 王开云. 钢轨磨耗型波磨计算模型与数值方法[J]. 交通运输工程学报, 2005, 5 (2): 12-18. http://transport.chd.edu.cn/article/id/200502004JIN Xue-song, WEN Ze-feng, WANG Kai-yun. Theoretical model and numerical method of rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2005, 5 (2): 12-18. (in Chinese). http://transport.chd.edu.cn/article/id/200502004 [19] ARIAS-CUEVAS O, LI Z. Field investigations into the performance of magnetic track brakes of an electrical multiple unit against slippery tracks, Part 2: braking force and side effects[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2012, 226 (1): 72-94. doi: 10.1177/0954409711408375 [20] SUN Ya-hua, CAO Cheng-xuan, XU Yan, et al. Scheduling of high-speed rail traffic based on discrete-time movement model[J]. Chinese Physics B, 2013, 22 (12): 113-120. [21] ZHANG Li-jun, ZHUAN Xiang-tao. Braking-penalized receding horizon control of heavy-haul trains[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14 (4): 1620-1628. doi: 10.1109/TITS.2013.2263532 [22] 陈哲明, 曾京, 罗仁. 列车空气制动防滑控制及其仿真[J]. 铁道学报, 2009, 31 (4): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904007.htmCHEN Zhe-ming, ZENG Jing, LUO Ren. Wheel-slip prevention control and simulation under train pneumatic braking[J]. Journal of the China Railway Society, 2009, 31 (4): 25-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904007.htm [23] 郭应时, 袁伟, 付锐. 实验法求解汽车鼓式制动器对流换热系数[J]. 长安大学学报: 自然科学版, 2006, 26 (4): 92-94, 107. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604021.htmGUO Ying-shi, YUAN Wei, FU Rui. Solution for heat convection coefficient of automotive drum brake with experiments[J]. Journal of Chang'an University: Natural Science Edition, 2006, 26 (4): 92-94, 107. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604021.htm [24] JOU M, SHIAU J K, SUN C C. Design of a magnetic braking system[J]. Journal of Magnetism and Magnetic Materials, 2006, 304 (1): 234-236. [25] 王伟, 罗仁, 曾京. 车轮型面磨耗预测模型及仿真分析[J]. 铁道车辆, 2009, 47 (9): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200909002.htmWANG Wei, LUO Ren, ZENG Jing. Model for prediction of wheel profile wear and simulation analysis[J]. Rolling Stock, 2009, 47 (9): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200909002.htm [26] LEE R S, JOU J L. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology, 2003, 140 (1-3): 43-48. [27] 高秀坤, 陈俊岭, 张承一. 考虑热力耦合效应的磨损剥层机理研究与计算分析[J]. 石家庄铁道大学学报: 自然科学版, 2015, 28 (1): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201501015.htmGAO Xiu-kun, CHEN Jun-ling, ZHANG Cheng-yi. Study and analysis of the delamination theory based on the coupling effect between thermal stress and circular shear stress[J]. Journal of Shijiazhuang Tiedao University: Natural Science, 2015, 28 (1): 71-76. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201501015.htm [28] 王忠伟, 刘长生. 摩擦离合器与制动器的摩擦材料分析[J]. 中国公路学报, 2001, 14 (4): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200104027.htmWANG Zhong-wei, LIU Chang-sheng. Analysis on the friction material of the friction clutch and brake[J]. China Journal of Highway and Transport, 2001, 14 (4): 114-117. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200104027.htm