留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧急制动工况下电磁式磁轨制动器极靴磨损计算方法

陈士安 杨鑫 姚明 王胜 Young-baeKIM

陈士安, 杨鑫, 姚明, 王胜, Young-baeKIM. 紧急制动工况下电磁式磁轨制动器极靴磨损计算方法[J]. 交通运输工程学报, 2017, 17(1): 82-92.
引用本文: 陈士安, 杨鑫, 姚明, 王胜, Young-baeKIM. 紧急制动工况下电磁式磁轨制动器极靴磨损计算方法[J]. 交通运输工程学报, 2017, 17(1): 82-92.
CHEN Shi-an, YANG Xin, YAO Ming, WANG Sheng, Young-bae KIM. Pole shoe abrasion calculation method of electromagnetic track brake under emergency braking condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 82-92.
Citation: CHEN Shi-an, YANG Xin, YAO Ming, WANG Sheng, Young-bae KIM. Pole shoe abrasion calculation method of electromagnetic track brake under emergency braking condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 82-92.

紧急制动工况下电磁式磁轨制动器极靴磨损计算方法

基金项目: 

国家自然科学基金项目 51575239

详细信息
    作者简介:

    陈士安(1973-), 男, 湖北荆州人, 浙江水利水电学院教授, 工学博士, 从事车辆系统动力学和高速列车紧急制动技术研究

  • 中图分类号: U270.35

Pole shoe abrasion calculation method of electromagnetic track brake under emergency braking condition

More Information
  • 摘要: 为了预测极靴服务寿命, 确保制动可靠, 通过磨损过程、制动过程、制动器/钢轨温度场的建模与仿真, 计算了高速列车紧急制动过程中电磁式磁轨制动器极靴磨损量; 建立了考虑速度与温度的Archard磨损模型和CRH2列车紧急制动过程的动力学模型, 计算了电磁式磁轨制动器样机全程参与制动时的空气制动力、电磁制动力、制动减速度、紧急制动能量分配系数、瞬时速度和制动距离等时变参数; 分析了紧急制动时电磁式磁轨制动器-钢轨-大气间的热量传递, 基于Fluent软件建立了制动器/钢轨的三维温度场模型, 根据制动过程时变参数获取温度场热流密度和散热加载条件; 针对CRH2列车行驶速度为250km·h-1的紧急制动工况, 计算了制动器极靴的磨损量。计算结果表明: 在制动过程中, 钢轨顶部温度随着与制动器的接触状态变化呈波动变化, 在距离有效制动起点1 620m处, 钢轨与8号电磁式磁轨制动器接触结束时, 温度达到最大值570.76℃; CRH2列车同侧8个制动器极靴底部在制动时间为24.5s时温度达到最大值, 从前到后依次为1 022.6℃、1 037.7℃、1 045.3℃、1 052.8℃、1 085.7℃、1 100.9℃、1 109.2℃、1 124.4℃, 极靴磨损量从前到后依次为207.4、208.7、210.0、210.7、212.1、213.4、214.4、215.5g。可见, 制动器工作会使钢轨产生热量积累, 导致列车运行方向后面的电磁式磁轨制动器极靴温度较高, 磨损量较大。

     

  • 图  1  电磁式磁轨制动器与钢轨制动接触模型

    Figure  1.  Brake contact model between ETB and rail

    图  2  CRH2列车电磁式磁轨制动器布置

    Figure  2.  Layout of ETBs on CRH2train

    图  3  列车速度求解流程

    Figure  3.  Solving flowchart of train speed

    图  4  热量传递路径

    Figure  4.  Heat transfer paths

    图  5  电磁式磁轨制动器-钢轨有限元模型

    Figure  5.  Finite element model of ETB and rail

    图  6  电磁式磁轨制动器-钢轨吸力测试现场

    Figure  6.  Testing site of suction between ETB and rail

    图  7  紧急制动减速度与速度曲线

    Figure  7.  Curves of emergency braking deceleration and speed

    图  8  能量分配系数与速度曲线

    Figure  8.  Curve of energy distribution coefficient and speed

    图  9  速度与时间曲线

    Figure  9.  Curves of speed and time

    图  10  有效制动距离与速度曲线

    Figure  10.  Curve of effective braking distance and speed

    图  11  热流密度与时间曲线

    Figure  11.  Curve of heat flux and time

    图  12  距离有效制动起点1 620m处钢轨的温度与时间曲线

    Figure  12.  Curve of rail temperature and time at spot with1 620mfrom effective braking start

    图  13  轨头温度场

    Figure  13.  Temperature field of railhead

    图  14  电磁式磁轨制动器最高温度与时间曲线

    Figure  14.  Curves of highest temperatures and times of ETBs

    图  15  8号磁轨制动器底面的温度场

    Figure  15.  Temperature field of bottom of No.8ETB

    图  16  8号磁轨制动器纵向剖面的温度场

    Figure  16.  Temperature field of longitudinal profile of No.8ETB

    图  17  1号电磁式磁轨制动器温度与时间拟合曲线

    Figure  17.  Fitting curve of temperature and time of No.1ETB

    图  18  1号磁轨制动器极靴的磨损量与时间曲线

    Figure  18.  Curve of pole shoe abrasion loss and time of No.1ETB

    图  19  制动速度与时间曲线

    Figure  19.  Curves of braking speeds and time

    图  20  极靴底部温度与时间曲线

    Figure  20.  Curves of temperature and time of pole shoe bottom

    图  21  1号磁轨制动器极靴的磨损量与时间曲线

    Figure  21.  Curves of pole shoe abrasion loss and time of No.1ETB

    表  1  网格划分参数

    Table  1.   Mesh generation parameters

    下载: 导出CSV

    表  2  极靴磨损计算参数

    Table  2.   Calculation parameters of pole shoe abrasion loss

    下载: 导出CSV

    表  3  电磁式磁轨制动器参数

    Table  3.   Parameters of ETB

    下载: 导出CSV

    表  4  紧急制动全程中极靴的磨损量

    Table  4.   Abrasion losses of pole shoes during emergency braking process

    下载: 导出CSV
  • [1] 李瑞淳, 白雪寒. 世界高速铁路电动车组新技术的运用[J]. 国外铁道车辆, 2008, 45 (4): 1-6. doi: 10.3969/j.issn.1002-7610.2008.04.001

    LI Rui-chun, BAI Xue-han. Application of new technologies for high speed railway EMUs in the world[J]. Foreign Rolling Stock, 2008, 45 (4): 1-6. (in Chinese). doi: 10.3969/j.issn.1002-7610.2008.04.001
    [2] HERMAN D. All aboard for high-speed rail[J]. Mechanical Engineering, 1996, 118 (9): 94-97.
    [3] 刘汝让. 磁轨制动及其作用原理[J]. 机车车辆工艺, 2001 (5): 1-4. doi: 10.3969/j.issn.1007-6034.2001.05.001

    LIU Ru-rang. Magnetic track braking and its work principle[J]. Locomotive and Rolling Stock Technology, 2001 (5): 1-4. (in Chinese). doi: 10.3969/j.issn.1007-6034.2001.05.001
    [4] 高振山, 邓效忠, 陈拂晓, 等. 基于修正Archard理论的螺旋锥齿轮锻造模具寿命预测[J]. 中国机械工程, 2014, 25 (2): 226-229. doi: 10.3969/j.issn.1004-132X.2014.02.017

    GAO Zhen-shan, DENG Xiao-zhong, CHEN Fu-xiao, et al. Die service life estimation based on modified Archard method in forging spiral bevel gear[J]. China Mechanical Engineering, 2014, 25 (2): 226-229. (in Chinese). doi: 10.3969/j.issn.1004-132X.2014.02.017
    [5] ARCHARD J F, HIRST W. The wear of metals under unlubricated conditions[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1956, 236 (1206): 397-410.
    [6] PDRA P, ANDERSSON S. Simulating sliding wear with finite element method[J]. Tribology International, 1999, 32 (2): 71-81. doi: 10.1016/S0301-679X(99)00012-2
    [7] MYSHKIN N K, PETROKOVETS M I, CHIZHIK S A. Simulation of real contact in tribology[J]. Tribology International, 1998, 31 (1-3): 79-86. doi: 10.1016/S0301-679X(98)00010-3
    [8] BURWELL JR J T. Survey of possible wear mechanisms[J]. Wear, 1957, 1 (2): 119-141. doi: 10.1016/0043-1648(57)90005-4
    [9] 李骏. SXZ1032车离合器摩擦片磨损量的理论估算[J]. 华东交通大学学报, 1999, 16 (4): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT199904010.htm

    LI Jun. Theoretical calculation of wear value of clutch friction disc for truck SXZ1032[J]. Journal of East China Jiaotong University, 1999, 16 (4): 48-51. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT199904010.htm
    [10] 张学勇, 刘沃野, 陶凤和, 等. 离合器摩擦片长期磨损规律研究[J]. 润滑与密封, 2002, 25 (5): 44-45. doi: 10.3969/j.issn.0254-0150.2002.05.021

    ZHANG Xue-yong, LIU Wo-ye, TAO Feng-he, et al. A study on the wear-rules of the friction disk[J]. Lubrication Engineering, 2002, 25 (5): 44-45. (in Chinese). doi: 10.3969/j.issn.0254-0150.2002.05.021
    [11] 林纲, 谢敬佩, 杨茹萍, 等. 疲劳磨损和压碎磨损的应力计算[J]. 洛阳工学院学报, 1994, 15 (3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX403.002.htm

    LIN Gang, XIE Jing-pei, YANG Ru-ping, et al. Stress computation of fatigue wear and the pressure breakage wear[J]. Journal of Luoyang Institute of Technology, 1994, 15 (3): 13-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX403.002.htm
    [12] 严立, 徐久军, 潘新祥. 磨损问题的仿真求解研究[J]. 摩擦学学报, 1999, 19 (1): 50-55. doi: 10.3321/j.issn:1004-0595.1999.01.010

    YAN Li, XU Jiu-jun, PAN Xin-xiang. Research on the simulation method of wear process[J]. Tribology, 1999, 19 (1): 50-55. (in Chinese). doi: 10.3321/j.issn:1004-0595.1999.01.010
    [13] ALEKSENDRIC D, CIROVIC V. Effect of friction material manufacturing conditions on its wear[J]. SAE Technical Papers, DOI: 10.4271/2010-01-1679
    [14] 林高用, 冯迪, 郑小燕, 等. 基于Archard理论的挤压次数对模具磨损量的影响分析[J]. 中南大学学报: 自然科学版, 2009, 40 (5): 1245-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200905015.htm

    LIN Gao-yong, FENG Di, ZHENG Xiao-yan, et al. Analysis of influence of extrusion times on total die wear based on Archard theory[J]. Journal of Central South University: Science and Technology, 2009, 40 (5): 1245-1251. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200905015.htm
    [15] GLAESER W A. Friction and wear[J]. IEEE Transactions on Parts, Hybrids, and Packaging, 1971, 7 (2): 99-105. doi: 10.1109/TPHP.1971.1136416
    [16] 邵朋朋, 傅茂海, 周元, 等. 基于Archard模型的重载铁路货车车轮磨耗研究[J]. 铁道机车车辆, 2012, 32 (2): 42-45, 57. doi: 10.3969/j.issn.1008-7842.2012.02.011

    SHAO Peng-peng, FU Mao-hai, ZHOU Yuan, et al. Research on the evaluation of wheel-rail wear of heavy haul railway based on Archard's model[J]. Railway Locomotive and Car, 2012, 32 (2): 42-45, 57. (in Chinese). doi: 10.3969/j.issn.1008-7842.2012.02.011
    [17] 程迪, 程海涛. CRH2动车组动力学性能分析[J]. 机车电传动, 2010 (3): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201003005.htm

    CHENG Di, CHENG Hai-tao. Dynamics analysis for CRH2EMUs[J]. Electric Drive for Locomotives, 2010 (3): 13-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201003005.htm
    [18] 金学松, 温泽峰, 王开云. 钢轨磨耗型波磨计算模型与数值方法[J]. 交通运输工程学报, 2005, 5 (2): 12-18. http://transport.chd.edu.cn/article/id/200502004

    JIN Xue-song, WEN Ze-feng, WANG Kai-yun. Theoretical model and numerical method of rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2005, 5 (2): 12-18. (in Chinese). http://transport.chd.edu.cn/article/id/200502004
    [19] ARIAS-CUEVAS O, LI Z. Field investigations into the performance of magnetic track brakes of an electrical multiple unit against slippery tracks, Part 2: braking force and side effects[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2012, 226 (1): 72-94. doi: 10.1177/0954409711408375
    [20] SUN Ya-hua, CAO Cheng-xuan, XU Yan, et al. Scheduling of high-speed rail traffic based on discrete-time movement model[J]. Chinese Physics B, 2013, 22 (12): 113-120.
    [21] ZHANG Li-jun, ZHUAN Xiang-tao. Braking-penalized receding horizon control of heavy-haul trains[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14 (4): 1620-1628. doi: 10.1109/TITS.2013.2263532
    [22] 陈哲明, 曾京, 罗仁. 列车空气制动防滑控制及其仿真[J]. 铁道学报, 2009, 31 (4): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904007.htm

    CHEN Zhe-ming, ZENG Jing, LUO Ren. Wheel-slip prevention control and simulation under train pneumatic braking[J]. Journal of the China Railway Society, 2009, 31 (4): 25-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904007.htm
    [23] 郭应时, 袁伟, 付锐. 实验法求解汽车鼓式制动器对流换热系数[J]. 长安大学学报: 自然科学版, 2006, 26 (4): 92-94, 107. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604021.htm

    GUO Ying-shi, YUAN Wei, FU Rui. Solution for heat convection coefficient of automotive drum brake with experiments[J]. Journal of Chang'an University: Natural Science Edition, 2006, 26 (4): 92-94, 107. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604021.htm
    [24] JOU M, SHIAU J K, SUN C C. Design of a magnetic braking system[J]. Journal of Magnetism and Magnetic Materials, 2006, 304 (1): 234-236.
    [25] 王伟, 罗仁, 曾京. 车轮型面磨耗预测模型及仿真分析[J]. 铁道车辆, 2009, 47 (9): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200909002.htm

    WANG Wei, LUO Ren, ZENG Jing. Model for prediction of wheel profile wear and simulation analysis[J]. Rolling Stock, 2009, 47 (9): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200909002.htm
    [26] LEE R S, JOU J L. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology, 2003, 140 (1-3): 43-48.
    [27] 高秀坤, 陈俊岭, 张承一. 考虑热力耦合效应的磨损剥层机理研究与计算分析[J]. 石家庄铁道大学学报: 自然科学版, 2015, 28 (1): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201501015.htm

    GAO Xiu-kun, CHEN Jun-ling, ZHANG Cheng-yi. Study and analysis of the delamination theory based on the coupling effect between thermal stress and circular shear stress[J]. Journal of Shijiazhuang Tiedao University: Natural Science, 2015, 28 (1): 71-76. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201501015.htm
    [28] 王忠伟, 刘长生. 摩擦离合器与制动器的摩擦材料分析[J]. 中国公路学报, 2001, 14 (4): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200104027.htm

    WANG Zhong-wei, LIU Chang-sheng. Analysis on the friction material of the friction clutch and brake[J]. China Journal of Highway and Transport, 2001, 14 (4): 114-117. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200104027.htm
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  127
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-21
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回