留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实船油耗与排放的拖轮航速优化

楼狄明 包松杰 胡志远 谭丕强

楼狄明, 包松杰, 胡志远, 谭丕强. 基于实船油耗与排放的拖轮航速优化[J]. 交通运输工程学报, 2017, 17(1): 93-100.
引用本文: 楼狄明, 包松杰, 胡志远, 谭丕强. 基于实船油耗与排放的拖轮航速优化[J]. 交通运输工程学报, 2017, 17(1): 93-100.
LOU Di-ming, BAO Song-jie, HU Zhi-yuan, TAN Pi-qiang. Cruise speed optimization of tugboat based on real fuel consumption and emission[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 93-100.
Citation: LOU Di-ming, BAO Song-jie, HU Zhi-yuan, TAN Pi-qiang. Cruise speed optimization of tugboat based on real fuel consumption and emission[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 93-100.

基于实船油耗与排放的拖轮航速优化

基金项目: 

上海市科技攻关项目 15DZ1205401

详细信息
    作者简介:

    楼狄明(1963-), 男, 浙江东阳人, 同济大学教授, 工学博士, 从事柴油机的结构设计与性能优化研究

  • 中图分类号: U661.78

Cruise speed optimization of tugboat based on real fuel consumption and emission

More Information
  • 摘要: 利用便携式排放测试系统对上海外高桥港近海拖轮进行了油耗与排放测试, 拟合了油耗、排放与航速的关系, 建立了巡航工况下的航速优化模型, 分析了拖轮最佳油耗和排放对应的航速。试验结果表明: 船舶CO2的排放因子与燃油的品质和船舶工况相关, 与实船排放测试相比, 使用经验排放因子估算排放率是可行的; 当使用幂函数拟合CO、CO2、THC、NOx、PM、PN排放和油耗与航速关系时, 各拟合曲线的决定系数均大于0.9;仅对油耗优化, 当航速为7.21kn时, 拖轮单次巡航工况下的总油耗达到最小值, 相对最大航速12.00kn的油耗下降了33.40%;对油耗和NOx排放进行优化, 得到的最优航速最大; 对油耗与所有排放同时优化, 得到的最优航速最小; 当航速为6.96kn时, 拖轮的总油耗、NOx、PM和PN总排放达到最优值, 相对最大航速, 总油耗下降了33.29%, CO、CO2、THC、NOx、PM、PN减排率分别达到59.56%、76.37%、82.34%、92.36%、53.10%和62.25%。可见, 在最优航速时, 拖轮总油耗与总排放均显著减小。

     

  • 图  1  试验路线

    Figure  1.  Test route

    图  2  试验设备布置

    Figure  2.  Layout of test equipments

    图  3  CO2排放因子计算结果

    Figure  3.  Calculated result of CO2emission factor

    图  4  CO排放率拟合结果

    Figure  4.  Fitting result of CO emission rate

    图  5  CO2排放率拟合结果

    Figure  5.  Fitting result of CO2emission rate

    图  6  THC排放率拟合结果

    Figure  6.  Fitting result of THC emission rate

    图  7  NOx排放率拟合结果

    Figure  7.  Fitting result of NOxemission rate

    图  8  PM排放率拟合结果

    Figure  8.  Fitting result of PM emission rate

    图  9  PN排放率拟合结果

    Figure  9.  Fitting result of PN emission rate

    图  10  油耗拟合结果

    Figure  10.  Fitting result of fuel consumption

    图  11  总油耗曲线

    Figure  11.  Total fuel consumption curve

    图  12  排放物的减排率曲线

    Figure  12.  Curves of emission reduction rates

    表  1  拖轮主要参数

    Table  1.   Main parameters of tugboat

    下载: 导出CSV

    表  2  拖轮燃油参数

    Table  2.   Fuel parameters of tugboat

    下载: 导出CSV

    表  3  排放与油耗测试结果

    Table  3.   Test result of emission and fuel consumption

    下载: 导出CSV

    表  4  不同优化目标下最优航速

    Table  4.   Optimal speeds under different optimization objectives

    下载: 导出CSV
  • [1] KHLER J. Globalization and sustainable development: case study on international transport and sustainable development[J]. Journal of Environment and Development, 2014, 23 (1): 66-100. doi: 10.1177/1070496513507260
    [2] BLASCO J, DURN-GRADOS V, HAMPEL M, et al. Towards an integrated environmental risk assessment of emissions from ships'propulsion systems[J]. Environment International, 2014, 66 (3): 44-47.
    [3] CORBETT J J. New directions: designing ship emissions and impacts research to inform both science and policy[J]. Atmospheric Environment, 2003, 37 (33): 4719-4721. doi: 10.1016/j.atmosenv.2003.08.003
    [4] MARMER E, LANGMANN B. Impact of ship emissions on the Mediterranean summertime pollution and climate: a regional model study[J]. Atmospheric Environment, 2005, 39 (26): 4659-4669. doi: 10.1016/j.atmosenv.2005.04.014
    [5] 秦琦, 祁斌, 沈苏雯, 等. 2014年世界船舶市场评述及2015年展望[J]. 船舶, 2015 (1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ201501001.htm

    QIN Qi, QI Bin, SHEN Su-wen, et al. Review of world ship market in 2014and beyond[J]. Ship and Boat, 2015 (1): 1-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ201501001.htm
    [6] YAN F, WINIJKUL E, STREETS D G, et al. Global emission projections for the transportation sector using dynamic technology modeling[J]. Atmospheric Chemistry and Physics, 2014, 14 (11): 5709-5733. doi: 10.5194/acp-14-5709-2014
    [7] ARMSTRONG V N. Vesseloptimisation for low carbon shipping[J]. Ocean Engineering, 2013, 73: 195-207. doi: 10.1016/j.oceaneng.2013.06.018
    [8] WANG Shuai-an, MENG Qiang, LIU Zhi-yuan. Bunker consumption optimization methods in shipping: A critical review and extensions[J]. Transportation Research Part E: Logistics and Transportation Review, 2013, 53 (1): 49-62.
    [9] FAGERHOLT K, GAUSEL N T, RAKKE J G, et al. Maritime routing and speed optimization with emission control areas[J]. Transportation Research Part C: Emerging Technologies, 2015, 52: 57-73. doi: 10.1016/j.trc.2014.12.010
    [10] WONG E Y C, TAI A H, LAU H Y K, et al. An utilitybased decision support sustainability model in slow steaming maritime operations[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 78: 57-69. doi: 10.1016/j.tre.2015.01.013
    [11] KONTOVAS C, PSARAFTIS H N. Reduction of emissions along the maritime intermodal container chain: operational models and policies[J]. Maritime Policy and Management, 2011, 38 (4): 451-469. doi: 10.1080/03088839.2011.588262
    [12] LINDSTAD H, ASBJØRNSLETT B E, JULLUMSTRØE. Assessment of profit, cost and emissions by varying speed as a function of sea conditions and freight market[J]. Transportation Research Part D: Transport and Environment, 2013, 19 (1): 5-12.
    [13] CORBETT J J, WANG Hai-feng, WINEBRAKE J J. The effectiveness and costs of speed reductions on emissions from international shipping[J]. Transportation Research Part D: Transport and Environment, 2009, 14 (8): 593-598. doi: 10.1016/j.trd.2009.08.005
    [14] 姬钰. 上海港港作拖轮配置规划分析研究[D]. 上海: 上海交通大学, 2011.

    JI Yu. Analysis of planning and configuration of Shanghai harbor tugs[D]. Shanghai: Shanghai Jiaotong University, 2011. (in Chinese).
    [15] PAPSON A, HARTLEY S, BROWNING L. Cost effectiveness of five emission reduction strategies for inland river tug and towboats[J]. Applied Biochemistry and Biotechnology, 2010, 80 (2): 107-120.
    [16] JAYARAM V, AGRAWAL H, WELCH W A, et al. Realtime gaseous, PM and ultrafine particle emissions from a modern marine engine operating on biodiesel[J]. Environmental Science and Technology, 2011, 45 (6): 2286-2292. doi: 10.1021/es1026954
    [17] HALLQUISTÅM, FRIDELL E, WESTERLUND J, et al. Onboard measurements of nanoparticles from a SCR-equipped marine diesel engine[J]. Environmental Science and Technology, 2012, 47 (2): 773-780.
    [18] WINNES H, MOLDANOVÁJ, ANDERSON M, et al. Onboard measurements of particle emissions from marine engines using fuels with different sulphur content[J]. Journal of Engineering for the Maritime Environment, 2016, 230 (1): 45-54.
    [19] FU Ming-liang, DING Yan, GE Yun-shan, et al. Real-world emissions of inland ships on the grand canal, China[J]. Atmospheric Environment, 2013, 81 (4): 222-229.
    [20] ANDERSON M, SALO K, FRIDELL E. Particle-and gaseous emissions from an LNG powered ship[J]. Environmental Science and Technology, 2015, 49 (20): 12568-12575. doi: 10.1021/acs.est.5b02678
    [21] FRIDELL E, SALO K. Measurements of abatement of particles and exhaust gases in a marine gas scrubber[J]. Journal of Engineering for the Maritime Environment, 2016, 230 (1): 154-162.
    [22] 张学敏, 葛蕴珊, 张昱, 等. 利用碳平衡法进行汽车油耗测量的应用研究[J]. 车用发动机, 2005 (3): 56-58. https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD20050300H.htm

    ZHANG Xue-min, GE Yun-shan, ZHANG Yu, et al. Research on fuel consumption measurement using carbon balance method[J]. Vehicle Engine, 2005 (3): 56-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD20050300H.htm
    [23] WANG Shuai-an, MENG Qiang. Sailing speed optimization for container ships in a liner shipping network[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48 (3): 701-714.
    [24] 许欢, 刘伟, 张爽. 低碳经济下船舶航行速度选择[J]. 中国航海, 2012, 35 (2): 98-101, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201202023.htm

    XU Huan, LIU Wei, ZHANG Shuang. Choice of ship speeds under low-carbon economy[J]. Navigation of China, 2012, 35 (2): 98-101, 109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201202023.htm
    [25] CHANG C C, WANG C M. Evaluating the effects of speed reduce for shipping costs and CO2emission[J]. Transportation Research Part D: Transport and Environment, 2014, 31 (8): 110-115.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  188
  • PDF下载量:  944
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-12
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回