留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Lempel-Ziv算法与TOPSIS的水上交通流复杂性测度

张明阳 张笛 郭欢 付姗姗 黄亚敏

张明阳, 张笛, 郭欢, 付姗姗, 黄亚敏. 基于Lempel-Ziv算法与TOPSIS的水上交通流复杂性测度[J]. 交通运输工程学报, 2017, 17(1): 109-118.
引用本文: 张明阳, 张笛, 郭欢, 付姗姗, 黄亚敏. 基于Lempel-Ziv算法与TOPSIS的水上交通流复杂性测度[J]. 交通运输工程学报, 2017, 17(1): 109-118.
ZHANG Ming-yang, ZHANG Di, GUO Huan, FU Shan-shan, HUANG Ya-min. Complexity metric of waterborne traffic flow based on Lempel-Ziv algorithm and TOPSIS[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 109-118.
Citation: ZHANG Ming-yang, ZHANG Di, GUO Huan, FU Shan-shan, HUANG Ya-min. Complexity metric of waterborne traffic flow based on Lempel-Ziv algorithm and TOPSIS[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 109-118.

基于Lempel-Ziv算法与TOPSIS的水上交通流复杂性测度

基金项目: 

国家科技支撑计划项目 2015BAG20B00

国家自然科学基金项目 51579203

武汉理工大学研究生优秀学位论文培育项目 2016-YS-041

详细信息
    作者简介:

    张明阳(1993-), 河南周口人, 武汉理工大学工学博士研究生, 从事水上交通复杂性研究

    张笛(1983-), 湖北武汉人, 武汉理工大学副研究员, 工学博士

  • 中图分类号: U692.4

Complexity metric of waterborne traffic flow based on Lempel-Ziv algorithm and TOPSIS

More Information
  • 摘要: 为了定量分析并划分水上交通流的复杂性等级, 提出了一种基于Lempel-Ziv算法与TOPSIS的水上交通流复杂性测度方法。运用Lempel-Ziv算法求得实测水上交通流时间序列和对比序列(周期序列、Logistic序列、Henon序列、随机序列) 的复杂性特征值, 采用TOPSIS得到各个序列的贴近度, 根据对比序列的贴近度划分复杂性等级区间, 按照水上交通流时间序列的贴近度和所在的复杂性等级区间来表征各个序列的复杂程度, 并对长江口南槽航道的实测水上交通流进行复杂性测度。计算结果表明: 船舶交通事故数量和下行标准船舶数量与船舶交通流时序复杂性贴近度的相关系数分别为0.698 1、0.769 2, 变化趋势基本一致, 表明贴近度的计算结果可以反映水域船舶交通流的复杂性; 周期序列的贴近度为0.000 1, 随机序列的贴近度为0.999 9, Logistic序列和Henon序列的贴近度分别为0.449 2、0.537 7, 其值大于周期序列的贴近度, 小于随机序列的贴近度; 2013年7~11月水上交通流序列的贴近度分别为0.828 0、0.852 7、0.856 5、0.823 7、0.810 7, 说明序列的复杂性基本一致; 5个月的水上交通流序列的贴近度远大于周期序列的贴近度, 处于随机序列和Henon序列的贴近度之间, 更接近随机序列的贴近度, 说明水上交通流系统不是周期与完全随机的动力学系统; 5个月水上交通流复杂性的整体等级为1级, 表现出高复杂性的特点。

     

  • 图  1  水上交通流复杂性测度步骤

    Figure  1.  Steps of complexity metric for waterborne traffic flow

    图  2  四个序列复杂性特征值

    Figure  2.  Complexity eigenvalues of 4sequences

    图  3  四个序列的距离尺度和贴近度

    Figure  3.  Distance scales and close degrees of 4sequences

    图  4  地图上数据采集所选取的断面

    Figure  4.  Section based on data collection from map

    图  5  海图上数据采集所选取的断面

    Figure  5.  Section based on data collection from chart

    图  6  船舶时间序列

    Figure  6.  Time sequence for ships

    图  7  采样船舶的船头时距变化

    Figure  7.  Headway variation of sampling ships

    图  8  序列的复杂性特征值对比

    Figure  8.  Comparison of complexity eigenvalues of sequence

    图  9  交通事故数量和贴近度的关系

    Figure  9.  Relationship between number of traffic accidents and close degree

    图  10  下行标准船舶数量与贴近度的关系

    Figure  10.  Relationship between number of downside standard ships and close degree

    表  1  复杂性等级框架

    Table  1.   Framework of complexity class

    下载: 导出CSV

    表  2  实测序列和对比序列的复杂性特征值

    Table  2.   Complexity eigenvalues of measured sequences and compared sequences

    下载: 导出CSV

    表  3  时间序列与对比序列的距离尺度及贴近度

    Table  3.   Distance scales and close degrees of time sequences and compared sequences

    下载: 导出CSV
  • [1] 黄亚敏. 水上交通复杂性测度研究[D]. 武汉: 武汉理工大学, 2014.

    HUANG Ya-min. Study on marine traffic flow complexity metric[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese).
    [2] 毛喆, 严新平, 陈辉, 等. 水上交通事故分析研究进展[J]. 中国安全科学学报, 2010, 20 (12): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201012017.htm

    MAO Zhe, YAN Xin-ping, CHEN Hui, et al. Overview on marine accident analysis and its research trends[J]. China Safety Science Journal, 2010, 20 (12): 86-92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201012017.htm
    [3] 刘峰涛. 宏微观交通运输系统的复杂性测度及其管控应用[D]. 天津: 天津大学, 2006.

    LIU Feng-tao. Complexity measure of macroscopical and microcosmic transportation systems and its application to management and control[D]. Tianjin: Tianjin University, 2006. (in Chinese).
    [4] 朱俊, 张玮. 基于跟驰理论的内河航道通过能力计算模型[J]. 交通运输工程学报, 2009, 9 (5): 83-87. http://transport.chd.edu.cn/article/id/200905015

    ZHU Jun, ZHANG Wei. Calculation model of inland waterway transit capacity based on ship-following theory[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (5): 83-87. (in Chinese). http://transport.chd.edu.cn/article/id/200905015
    [5] 张勇. 交通流的非线性分析、预测和控制[D]. 北京: 北京交通大学, 2011.

    ZHANG Yong. Nonlinear characteristics analysis, predication and control of traffic flow[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese).
    [6] GOERLANDT F, STHLBERG K, KUJALA P. Influence of impact scenario models on collision risk analysis[J]. Ocean Engineering, 2012, 47: 74-87. doi: 10.1016/j.oceaneng.2012.03.006
    [7] 徐武雄, 初秀民, 陈先桥, 等. 桥区航道交通流仿真中船舶生成方法[J]. 系统仿真学报, 2014, 26 (8): 1644-1651. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201408004.htm

    XU Wu-xiong, CHU Xiu-min, CHEN Xian-qiao, et al. Methods of generating vessels for traffic flow simulation of bridge areas waterway[J]. Journal of System Simulation, 2014, 26 (8): 1644-1651. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201408004.htm
    [8] 谭志荣, 严新平, 刘亮. 长江干线桥区船舶到达规律数学模型及检验[J]. 交通信息与安全, 2010, 29 (2): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201002015.htm

    TAN Zhi-rong, YAN Xin-ping, LIU Liang. Examination of vessel traffic flow distribution model in Yangtze River Bridge area[J]. Journal of Transport Information and Safety, 2010, 29 (2): 70-73. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201002015.htm
    [9] ÖZBAıB, OR I. Analysis and control of maritime transit traffic through the Istanbul Channel: a simulation approach[J]. Central European Journal of Operations Research, 2007, 15 (3): 235-252. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202012011.htm
    [10] 曹宝贵. 交通流复杂动态特性与交通拥堵问题研究[D]. 长春: 吉林大学, 2010.

    CAO Bao-gui. The study on complex and dynamic characteristics of traffic flow and traffic jams[D]. Changchun: Jilin University, 2010. (in Chinese).
    [11] PINCUS S M. Approximate entropy as a measure of system complexity[J]. Proceedings of the National Academy of Sciences, 1991, 88 (6): 2297-2301. doi: 10.1073/pnas.88.6.2297
    [12] COOK A, BLOM H A P, LILLO F, et al. Applying complexity science to air traffic management[J]. Journal of Air Transport Management, 2014, 42: 149-158.
    [13] 刘峰涛. 从意向性到映射: 系统复杂性测度的理论架构[J]. 科学研究, 2009, 27 (7): 968-975. https://www.cnki.com.cn/Article/CJFDTOTAL-KXYJ200907003.htm

    LIU Feng-tao. From intention to map: theoretical framework of the measure of system complexity[J]. Studies in Science of Science, 2009, 27 (7): 968-975. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXYJ200907003.htm
    [14] 徐庚保, 曾莲芝. 基于仿真的复杂系统研究[J]. 计算机仿真, 2013, 30 (2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201302002.htm

    XU Geng-bao, ZENG Lian-zhi. Simulation-based complex system study[J]. Computer Simulation, 2013, 30 (2): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201302002.htm
    [15] SHANG Peng-jian, LI Xue-wei, KAMAE S. Nonlinear analysis of traffic time series at different temporal scales[J]. Physics Letters A, 2006, 357 (4/5): 314-318.
    [16] WEN Yuan-qiao, HUANG Ya-min, ZHOU Chun-hui, et al. Modelling of marine traffic flow complexity[J]. Ocean Engineering, 2015, 104: 500-510.
    [17] 文元桥, 黄亚敏, 杨君兰, 等. 水上交通流结构复杂度建模[J]. 中国航海, 2014, 37 (2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201402015.htm

    WEN Yuan-qiao, HUANG Ya-min, YANG Jun-lan, et al. Modeling of marine traffic flow structure complexity[J]. Navigation of China, 2014, 37 (2): 62-68. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201402015.htm
    [18] FERMO L, TOSIN A. A fully-discrete-state kinetic theory approach to traffic flow on road networks[J]. Mathematical Models and Methods in Applied Sciences, 2015, 25 (3): 423-461.
    [19] 叶博嘉, 胡明华, 张晨, 等. 基于交通结构的空中交通复杂性建模[J]. 交通运输系统工程与信息, 2012, 12 (1): 166-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201201026.htm

    YE Bo-jia, HU Ming-hua, ZHANG Chen, et al. Traffic structure-based air traffic complexity modeling[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12 (1): 166-172. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201201026.htm
    [20] 张勇, 关伟. 基于联合熵和C0复杂度的交通流复杂性测度[J]. 计算机工程与应用, 2010, 46 (15): 22-24, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201015007.htm

    ZHANG Yong, GUAN Wei. Complexity measure of traffic flow based on union entropy and C0complexity[J]. Computer Engineering and Applications, 2010, 46 (15): 22-24, 33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201015007.htm
    [21] AGUARÓN-JOVEN J, ESCOBAR-URMENETA M T, GARCÍAALCARAZ J L, et al. A new synthesis procedure for TOPSIS based on AHP[J]. DYNA, 2015, 82 (191): 11-19.
    [22] LEMPEL A, ZIV J. On the complexity of finite sequences[J]. IEEE Transactions on Information Theory, 1976, 22 (1): 75-81.
    [23] 刘峰涛. 城市与高速公路交通流复杂度的测度及比较[J]. 系统工程, 2007, 25 (7): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200707015.htm

    LIU Feng-tao. Complexity measures and comparison of urban traffic flow and freeway traffic flow[J]. Systems Engineering, 2007, 25 (7): 78-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200707015.htm
    [24] 谈国强. 离散混沌系统的复杂性算法研究[D]. 长沙: 中南大学, 2007.

    TAN Guo-qiang. Complexity study of the discrete chaos system[D]. Changsha: Central South University, 2007. (in Chinese).
    [25] LI Jian, YE Xiang-dong. Recent development of chaos theory in topological dynamics[J]. Acta Mathematica Sinica, English Series, 2016, 32 (1): 83-114.
    [26] 袁利国. 基于Logistic模型的几类系统的动力学研究及其参数估计[D]. 广州: 华南理工大学, 2012.

    YUAN Li-guo. Research on dynamics of several dynamical systems based on logistic models and parameter identification[D]. Guangzhou: South China University of Technology, 2012. (in Chinese).
    [27] AKHMET M U, FEN M O. Entrainment by chaos[J]. Journal of Nonlinear Science, 2014, 24 (3): 411-439.
    [28] 张蕾. 长江干线典型航道通过能力仿真研究[D]. 武汉: 武汉理工大学, 2009.

    ZHANG Lei. A simulation approach to typical waterway capacity on the trunk line of the Yangtze River[D]. Wuhan: Wuhan University of Technology, 2009. (in Chinese).
    [29] LI Jian, YANG Xing, LIU Ke-zhong, et al. Study on the fluency of one-way waterway transportation based on First Come First Served (FCFS) model[C]//IEEE. The 3rd International Conference on Transportation Information and Safety. New York: IEEE, 2015: 669-674.
    [30] 张勇, 关伟. 采用LS-SVM计算时间序列的Lyapunov指数谱[J]. 计算机工程与应用, 2009, 45 (31): 196-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200931060.htm

    ZHANG Yong, GUAN Wei. Calculation Lyapunov exponent spectrum of time series based on least-squared support vector machine[J]. Computer Engineering and Applications, 2009, 45 (31): 196-199. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200931060.htm
    [31] 严新平, 张笛, 张明阳, 等. 从ESREL2015国际会议的动态展望交通安全发展[J]. 交通信息与安全, 2015, 33 (5): 1-8, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201505001.htm

    YAN Xin-ping, ZHANG Di, ZHANG Ming-yang, et al. Research trends of transportation safety: identified from ESREL 2015 conference[J]. Journal of Transport Information and Safety, 2015, 33 (5): 1-8, 15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201505001.htm
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  632
  • HTML全文浏览量:  127
  • PDF下载量:  532
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-11
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回