留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬索桥重力式锚碇结构-地基联合承载机制

尹小涛 严飞 周磊 王东英 邓琴

尹小涛, 严飞, 周磊, 王东英, 邓琴. 悬索桥重力式锚碇结构-地基联合承载机制[J]. 交通运输工程学报, 2017, 17(2): 1-11.
引用本文: 尹小涛, 严飞, 周磊, 王东英, 邓琴. 悬索桥重力式锚碇结构-地基联合承载机制[J]. 交通运输工程学报, 2017, 17(2): 1-11.
YIN Xiao-tao, YAN Fei, ZHOU Lei, WANG Dong-ying, DENG Qin. Joint bearing mechanism of structure and foundation for gravity anchor block of suspension bridge[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 1-11.
Citation: YIN Xiao-tao, YAN Fei, ZHOU Lei, WANG Dong-ying, DENG Qin. Joint bearing mechanism of structure and foundation for gravity anchor block of suspension bridge[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 1-11.

悬索桥重力式锚碇结构-地基联合承载机制

基金项目: 

云南省交通运输厅科技计划项目 2014(A)01

云南省交通运输厅科技计划项目 2011(LH)12-a

详细信息
    作者简介:

    尹小涛(1975-), 男, 陕西咸阳人, 中国科学院武汉岩土力学研究所副研究员, 工学博士, 从事地基与基础协同作用研究

  • 中图分类号: U443.24

Joint bearing mechanism of structure and foundation for gravity anchor block of suspension bridge

More Information
    Author Bio:

    YIN Xiao-tao(1975-), male, associate researcher, PhD, +86-27-87198213, xtyin@whrsm.ac.cn

  • 摘要: 基于普宣高速公路宣威岸重力式锚碇工程, 设计了不回填无预应力、不回填有预应力和回填有预应力3种计算工况, 利用数值仿真试验分析了重力式锚碇和地基的力学机制和破坏模式。承载机制表明: 8倍设计荷载之前没有塑性变形, 为弹性工作状态, 最大变形在锚岩界面, 摩擦效应居主导, 基底拉应力区可控, 锚碇结构抗滑移和抗倾覆性均处于稳定可控状态; 12倍设计荷载之后塑性区逐步扩展, 达到20倍设计荷载时全部贯通, 基底塑性变形明显, 锚碇结构变形显著, 基底夹持岩体剪切破坏, 夹持效应居主导, 基底拉应力区不可控, 锚碇结构抗滑移和抗倾覆性均处于不可控状态; 锚碇施加的预应力只在结构-岩基协调变形之前起作用, 之后影响不大; 回填可以极大地改善基底应力状态与结构扭转变形、抗滑移和抗倾覆稳定性, 可在容许变形范围内适当考虑增强效应。可见, 重力式锚碇结构-地基协调变形与联合承载机制, 表现为摩擦效应、夹持效应和回填效应的综合作用。监测结果显示: 通过基底拉应力和压应力监控结构与地基接触面安全性, 监测值小于地基容许承载力3MPa; 通过基底变位和地基深部水平位移监控结构抗滑移稳定性, 实际工程监测值小于1mm; 通过角点不均匀沉降监控锚碇抗倾覆稳定性, 倾斜值小于0.006;通过大体积混凝土温控监测可知, 内部最高温度小于60℃, 进出水温差小于15℃, 内表温差小于20℃, 峰后降温速率小于3℃·d-1; 锚束锁固荷载监测变化幅值不超过设计值的5%。

     

  • 图  1  重力式锚碇实体

    Figure  1.  Entity of gravity anchor block

    图  2  重力式锚碇工程地质剖面

    Figure  2.  Engineering geological profile of gravity anchor block

    图  3  重力式锚碇设计方案

    Figure  3.  Design scheme of gravity anchor block

    图  4  重力式锚碇几何模型

    Figure  4.  Geometric model of gravity anchor block

    图  5  重力式锚碇数值模型

    Figure  5.  Numerical model of gravity anchor block

    图  6  1P~2P荷载作用下的塑性区

    Figure  6.  Plastic zone under 1P-2P load

    图  7  4P荷载作用下的塑性区

    Figure  7.  Plastic zone under 4P load

    图  8  8P荷载作用下的塑性区

    Figure  8.  Plastic zone under 8P load

    图  9  12P荷载作用下的塑性区

    Figure  9.  Plastic zone under 12P load

    图  10  14P荷载作用下的塑性区

    Figure  10.  Plastic zone under 14P load

    图  11  16P荷载作用下的塑性区

    Figure  11.  Plastic zone under 16P load

    图  12  18P荷载作用下的塑性区

    Figure  12.  Plastic zone under 18 P load

    图  13  20P荷载作用下的塑性区

    Figure  13.  Plastic zone under 20P load

    图  14  轴线剖面塑性区扩展与加载关系曲线

    Figure  14.  Relation curve of plastic zone expansion and load for axis section

    图  15  重力式锚碇极限状态塑性区

    Figure  15.  Plastic zones of gravity anchor block under ultimate bearing condition

    图  16  基底轴线法向应力曲线

    Figure  16.  Normal stress curves of base axis

    图  17  基底轴线剪切应力曲线

    Figure  17.  Shearing stress curves of base axis

    图  18  轴向位移曲线

    Figure  18.  Axial displacement curves

    图  19  横向位移曲线

    Figure  19.  Lateral displacement curves

    图  20  竖向位移曲线

    Figure  20.  Vertical displacement curves

    图  21  角位移曲线

    Figure  21.  Angular displacement curves

    图  22  重力式锚碇破坏与承载机制

    Figure  22.  Damaging and bearing mechanism of gravity anchor block

    图  23  岩基深部位移监测结果

    Figure  23.  Monitoring result of deep displacement in rock base

    图  24  夹持效应试验结果

    Figure  24.  Test result of clamping effect

    表  1  计算参数

    Table  1.   Computing parameters

    下载: 导出CSV

    表  2  极限工况轴线剖面塑性区

    Table  2.   Plastic zones of axial section under limit conditions

    下载: 导出CSV
  • [1] HAN Yan, CHEN Zheng-qing, LUO Shi-dong, et al. Calculation method on shape finding of self-anchored suspension bridge with spatial cables[J]. Frontiers of Structural and Civil Engineering, 2009, 3 (2): 165-172.
    [2] ZHANG Zhe, WANG Hui-li, QIN Shi-feng, et al. Limit span of self-anchored cable-stayed suspension cooperation system bridge based on strength[J]. Frontiers of Structural and Civil Engineering, 2009, 3 (3): 286-291.
    [3] LI Jian-hui, FENG Dong-ming, LI Ai-qun, et al. Determination of reasonable finished state of self-anchored suspension bridges[J]. Journal of Central South University, 2016, 23 (1): 209-219. doi: 10.1007/s11771-016-3064-6
    [4] LEES H, LEE H H, PAIK I, et al. Evaluation of load and resistance factors for the reliability-based design of the main cables of earth-anchored suspension bridges[J]. KSCE Journal of Civil Engineering, 2016, 20 (6): 2457-2468. doi: 10.1007/s12205-015-1442-5
    [5] KIM H K, LEE M J, CHANG S P. Non-linear shape-finding analysis of a self-anchored suspension bridge[J]. Engineering Structures, 2002, 24 (12): 1547-1559. doi: 10.1016/S0141-0296(02)00097-4
    [6] SHINS U, JUNG M R, PARK J, et al. A deflection theory and its validation of earth-anchored suspension bridges under live loads[J]. KSCE Journal of Civil Engineering, 2015, 19 (1): 200-212. doi: 10.1007/s12205-014-0641-9
    [7] ZHANG Qi-hua, LI Yu-jie, YU Mei-wan, et al. Study of the rock foundation stability of the Aizhai suspension bridge over a deep canyon area in China[J]. Engineering Geology, 2015, 198: 65-77. doi: 10.1016/j.enggeo.2015.09.012
    [8] ADANUR S, GNAYDIN M, ALTUNISIK A C, et al. Construction stage analysis of Humber Suspension Bridge[J]. Applied Mathematical Modelling, 2012, 36 (11): 5492-5505. doi: 10.1016/j.apm.2012.01.011
    [9] BHALLAS, YANG Y W, ZHAO J, et al. Structural health monitoring of underground facilities—technological issues and challenges[J]. Tunnelling and Underground Space Technology, 2005, 20 (5): 487-500. doi: 10.1016/j.tust.2005.03.003
    [10] TAYLOR R J. Interaction of anchors with soil and anchor design[R]. California: Naval Civil Engineering Lab, 1982.
    [11] US Navy. US Navy Salvage Engineer's Handbook[M]. Washington DC: US Navy, 2000.
    [12] 范菊. 悬索桥锚旋系统及接触摩擦问题的研究[D]. 大连: 大连理工大学, 2011.

    FAN Ju. The study of suspension bridge anchorage system and the question of contact friction[D]. Dalian: Dalian University of Technology, 2011. (in Chinese).
    [13] 赵启林, 陈斌, 卓家寿. 悬索桥锚碇及地基基础中的力学问题研究动态[J]. 水利水电科技进展, 2001, 21 (1): 22-26. doi: 10.3880/j.issn.1006-7647.2001.01.008

    ZHAO Qi-lin, CHEN Bin, ZHUO Jia-shou. Developments in mechanical analysis of suspension bridges'anchorage and foundation[J]. Advances in Science and Technology of Water Resources, 2001, 21 (1): 22-26. (in Chinese). doi: 10.3880/j.issn.1006-7647.2001.01.008
    [14] 吉林, 眭峰, 王保田. 润扬大桥锚碇基岩摩阻力试验研究[J]. 岩石力学与工程学报, 2003, 23 (2): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402015.htm

    JI Lin, XU Feng, WANG Bao-tian. Testing study on base resistance of the anchors at Runyang Yangtze Bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 23 (2): 256-260. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402015.htm
    [15] 陈志坚, 董学武, 谢和平. 复杂受力条件下重力式结构基底应力的实测研究[J]. 河海大学学报: 自然科学版, 2004, 32 (1): 46-50. doi: 10.3321/j.issn:1000-1980.2004.01.011

    CHEN Zhi-jian, DONG Xue-wu, XIE He-ping. Monitoring data-based study on foundation stress of gravity structures under complex loading conditions[J]. Journal of Hohai University: Natural Sciences, 2004, 32 (1): 46-50. (in Chinese). doi: 10.3321/j.issn:1000-1980.2004.01.011
    [16] 吉林, 冯兆祥, 周世忠. 江阴大桥北锚沉井基础变位过程实测研究[J]. 公路交通科技, 2001, 18 (3): 33-35. doi: 10.3969/j.issn.1002-0268.2001.03.009

    JI Lin, FENG Zhao-xiang, ZHOU Shi-zhong. Study on Jiangying Bridge north anchoring sunk shaft foundation displacement process[J]. Journal of Highway and Transportation Research and Development, 2001, 18 (3): 33-35. (in Chinese). doi: 10.3969/j.issn.1002-0268.2001.03.009
    [17] 陈志坚, 周世忠, 卓家寿. 大跨径悬索桥地基基础安全监控模型的研究思路及技术路线[J]. 中国工程科学, 2002, 4 (6): 20-24. doi: 10.3969/j.issn.1009-1742.2002.06.006

    CHEN Zhi-jian, ZHOU Shi-zhong, ZHUO Jia-shou. Technical methods to make safety monitoring and forecast models for the foundation of long suspension bridges[J]. Engineering Science, 2002, 4 (6): 20-24. (in Chinese). doi: 10.3969/j.issn.1009-1742.2002.06.006
    [18] 周磊. 悬索桥锚碇结构长期安全监测合理测点布置技术研究[D]. 重庆: 重庆交通大学, 2012.

    ZHOU Lei. Reasonable arrangement technology of measuring points research of long term safety monitoring for suspension bridge anchorage[D]. Chongqing: Chongqing Jiaotong University, 2012. (in Chinese).
    [19] 卢江, 朱晓文, 赵启林. 悬索桥锚碇基础的计算与安全监控技术进展[J]. 贵州工业大学学报: 自然科学版, 2008, 37 (4): 240-244. https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX200804057.htm

    LU Jiang, ZHU Xiao-wen, ZHAO Qi-lin. Development of safety monitoring and control of suspension bridge's anchorage foundation based on design and calculation[J]. Journal of Guizhou University of Technology: Natural Science Edition, 2008, 37 (4): 240-244. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX200804057.htm
    [20] 李家平, 张子新, 黄宏伟, 等. 宁波庆丰大桥锚碇室内相似模型试验研究[J]. 同济大学学报: 自然科学版, 2005, 33 (8): 1011-1016. doi: 10.3321/j.issn:0253-374X.2005.08.004

    LI Jia-ping, ZHANG Zi-xin, HUANG Hong-wei, et al. Research on similarity model test of anchorage of Qingfeng Suspension Bridge in Ningbo[J]. Journal of Tongji University: Natural Science, 2005, 33 (8): 1011-1016. (in Chinese). doi: 10.3321/j.issn:0253-374X.2005.08.004
    [21] 李永盛. 江阴长江公路大桥北锚碇模型试验研究[J]. 同济大学学报, 1995, 23 (2): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ502.004.htm

    LI Yong-sheng. Experimental study on thenorth anchorage of the Jiangyin Yangtze Bridge[J]. Journal of Tongji University, 1995, 23 (2): 134-140. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ502.004.htm
    [22] 黄奶清, 李亚平, 程利鹏, 等. 悬索桥重力式混凝土锚碇稳定性验算与数值分析[J]. 河南城建学院学报, 2014, 23 (3): 5-8, 49. doi: 10.3969/j.issn.1674-7046.2014.03.002

    HUANG Nai-qing, LI Ya-ping, CHENG Li-peng, et al. Stability calculation and numerical analysis on anchorage of suspension bridge with gravity concrete[J]. Journal of Henan University of Urban Construction, 2014, 23 (3): 5-8, 49. (in Chinese). doi: 10.3969/j.issn.1674-7046.2014.03.002
    [23] 吴国光, 张永健, 陈国平, 等. 矮寨大桥重力式锚碇应力分析[J]. 桥梁建设, 2013, 43 (6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201306007.htm

    WU Guo-guang, ZHANG Yong-jian, CHEN Guo-ping, et al. Stress analysis of gravity anchorage of Aizai Bridge[J]. Bridge Construction, 2013, 43 (6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201306007.htm
    [24] 李家平, 李永盛, 王如路. 悬索桥重力式锚碇结构变位规律研究[J]. 岩上力学, 2007, 28 (1): 145-150. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200701028.htm

    LI Jia-ping, LI Yong-sheng, WANG Ru-lu. Research on Displacement of anchorage of suspension bridge[J]. Rock and Soil Mechanics, 2007, 28 (1): 145-150. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200701028.htm
    [25] 游晓敏, 黄宏伟. 悬索桥锚碇剪切滑移的机理及试验初探[J]. 岩土力学, 2007, 28 (2): 336-342. doi: 10.3969/j.issn.1000-7598.2007.02.025

    YOU Xiao-min. HUANG Hong-wei. Test study on mechanism of shear-slip of anchorage in suspension bridge[J]. Rock and Soil Mechanics, 2007, 28 (2): 336-342. (in Chinese). doi: 10.3969/j.issn.1000-7598.2007.02.025
    [26] 邵国建, 苏静波, 胡强. 润扬大桥悬索桥北锚碇基础接触应力仿真分析[J]. 中国工程科学, 2006, 8 (6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200606004.htm

    SHAO Guo-jian, SU Jing-bo, HU Qiang. Numerical simulation of contact stresses under north anchorage foundation of Runyang Suspension Bridge[J]. Engineering Science, 2006, 8 (6): 28-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200606004.htm
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  793
  • HTML全文浏览量:  155
  • PDF下载量:  440
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-21
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回