Uneven settlement characteristics and influence factors of metro elevated structures in soft soil region
-
摘要: 为了探究软土地区某地铁高架结构不均沉降发展特性, 选取某地铁运营线高架段, 进行了为期2年的沉降观测, 观测结构包括: 高架车站、高架区间的简支梁桥与2座大跨连续梁桥; 分析了地铁高架结构的桥墩、道床不均匀沉降特征及其影响因素, 研究了地铁高架线路在建设期与运营期沉降的发展规律。分析结果表明: 该线路运营2年后, 桥墩累计沉降(相对运营开始的沉降) 最大值为12.4mm, 并仍有继续发展趋势, 地铁周边的建筑工程活动使全线共形成6个明显的沉降槽, 总体上相邻桥墩差异沉降小于2 mm; 高架车站的桥墩沉降以建设期为主, 建设期最大累计沉降为17.5mm, 建设期与运营期最大累计总沉降为18.8mm; 在建设期与运营期高架区间桥墩沉降无明显差异, 建设期最大累计沉降为14.2mm, 建设期与运营期最大累计总沉降为23.9mm; 高架区间简支梁桥上的道床板大部分为上拱变形, 最大变形为8.9mm, 而大跨连续梁桥主跨上的道床板下挠变形较显著, 跨径为129m的连续梁桥道床板最大挠曲变形达29.2mm。Abstract: In order to study the uneven settlement characteristics of elevated structures of a metro line in soft soil region, a long-term settlement observation was carried out during construction period and operation period, and the observed objects included elevated stations, elevated intervals with prestressed concrete simply supported beam bridges and large-span prestressed continuous bridges.The uneven settlement characteristics of piers and track beds of elevated substructures and their influence factors were investigated, and the settlement development rules during operation period and construction period were compared.Analysis result shows that after 2 years of operation, the maximum settlement of piers is 12.4 mm with relative to the beginning settlement of operation, and there is still a trend of continuous development.Six settlementtroughs are observed on the studied metro line because of the activities of construction engineering around the metro line.Totally, the differential settlements of adjacent piers are less than 2 mm.The settlement of elevated station mainly generates during construction period, the maximum accumulative settlement is about 17.5 mm at the moment, and the total maximum accumulative settlement only is 18.8 mm during both construction period and operation period.The differential settlements of bridge piers in elevated intervals are unconspicuous during both construction period and operation period, the maximum accumulative settlement during construction period is 14.2 mm, and the total maximum accumulative settlement is 23.9 mm during both construction period and operation period.Most of ballast bed slabs on simple support beam bridge in elevated intervals have upward deformations, and the maximum deformation is 8.9 mm.While the ballast bed slabs on the main spans of large-span continuous beam bridge have large deflections, and the maximum deformation is 29.2 mm.
-
Key words:
- soft soil region /
- metro viaduct /
- pier /
- ballast bed /
- differential settlement
-
表 1 土层物理力学指标
Table 1. Physical and mechanical indexes of soil layers
表 2 车站基本信息
Table 2. Basic informations of subway stations
表 3 沿线周边建筑开发情况
Table 3. Adjacent construction development condition along metro line
表 4 建设期与运营期桥墩沉降
Table 4. Pier settlements during construction and operation
-
[1] POULOS H G. Cyclic axial loading analysis of piles in sand[J]. Journal of Geotechnical Engineering, 1989, 115 (6): 836-852. doi: 10.1061/(ASCE)0733-9410(1989)115:6(836) [2] POULOS H G. Pile group settlement estimation—research to practice[C]//ASCE. GeoShanghai International Conference2006. Reston: ASCE, 2006: 1-22. [3] FELLENIUS B H. Results from long-term measurement in piles of drag load and downdrag[J]. Canadian Geotechnical Journal, 2006, 43 (4): 409-430. doi: 10.1139/t06-009 [4] FELLENIUS B H, KIM S R, CHUNG S G. Long-term monitoring of strain in instrumented piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135 (11): 1583-1595. doi: 10.1061/(ASCE)GT.1943-5606.0000124 [5] ENDLEY S N, DUNLAP W, KNUCKEY D, et al. Settlement of pile supported mat foundations[C]//ASCE. Specialty Conference on Performance Confirmation of Constructed Geotechnical Facilities. Reston: ASCE, 2000: 84-97. [6] ROY M, BLANCHET R, TAVENAS F, et al. Behaviour of a sensitive clay during pile driving[J]. Canadian Geotechnical Journal, 1981, 18 (1): 67-85. doi: 10.1139/t81-007 [7] 张定, 陈竹昌, 姚笑青. 桩的施工方法对桩基沉降的影响[J]. 同济大学学报, 1999, 27 (6): 723-727. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199906019.htmZHANG Ding, CHEN Zhu-chang, YAO Xiao-qing. Effects of pile installation on settlement of groups[J]. Journal of Tonji University, 1999, 27 (6): 723-727. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199906019.htm [8] 戴荣良, 陈晖, 喻云岩. 上海高层建筑桩基土类型特性和沉降分析[J]. 岩土工程学报, 2001, 23 (5): 627-630. doi: 10.3321/j.issn:1000-4548.2001.05.024DAI Rong-liang, CHEN Hui, YU Yun-yan. Subsoil character of pile foundation and settlement analysis of high-rise buildings in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2001, 23 (5): 627-630. (in Chinese). doi: 10.3321/j.issn:1000-4548.2001.05.024 [9] 周红波, 陈竹昌. 上海软土地区打入桩基长期沉降性状研究[J]. 岩土力学, 2007, 28 (9): 1856-1860. doi: 10.3969/j.issn.1000-7598.2007.09.016ZHOU Hong-bo, CHEN Zhu-chang. Study on long-term settlement behavior of driven pile foundation in Shanghai soft area[J]. Rock and soil Mechanics, 2007, 28 (9): 1856-1860. (in Chinese). doi: 10.3969/j.issn.1000-7598.2007.09.016 [10] 周红波. 高层建筑钻孔桩基长期沉降特性分析[J]. 建筑技术, 2007, 38 (3): 183-185. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJI200703006.htmZHOU Hong-bo. Analysis on characteristics of long-term settlement of bored pile foundation of high-rise building[J]. Architecture Technology, 2007, 38 (3): 183-185. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJI200703006.htm [11] 冷伍明, 杨奇, 聂如松, 等. 高速铁路桥梁桩基工后沉降组合预测研究[J]. 岩土力学, 2011, 32 (11): 3341-3348. doi: 10.3969/j.issn.1000-7598.2011.11.023LENG Wu-ming, YANG Qi, NIE Ru-song, et al. Study of post-construction settlement combination forecast method of high-speed railway bridge pile foundation[J]. Rock and Soil Mechanics, 2011, 32 (11): 3341-3348. (in Chinese). doi: 10.3969/j.issn.1000-7598.2011.11.023 [12] 苏春晖, 马建林, 潘海泽. 京沪高速铁路天津特大桥深厚软土超长群桩沉降现场监测与分析[J]. 铁道建筑, 2013 (8): 16-19. doi: 10.3969/j.issn.1003-1995.2013.08.05SU Chun-hui, MA Jian-lin, PAN Hai-ze. Situ monitoring and analysis on settlement of super-long pile group of Tianjin Super Bridge in thick underlying soft soil on Beijing-Shanghai High Speed Railway[J]. Railway Engineering, 2013 (8): 16-19. (in Chinese). doi: 10.3969/j.issn.1003-1995.2013.08.05 [13] 杨吉新, 朱伟伟, 丁兰. 哈大客运专线桥梁墩台沉降观测与预测[J]. 铁道工程学报, 2010 (7): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201007011.htmYANG Ji-xin, ZHU Wei-wei, DING Lan. Observation and prediction of settle of bridge pier and abutment of HarbinDalian Passenger Dedicated Line[J]. Journal of Railway Engineering Society, 2010 (7): 42-47. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201007011.htm [14] 张文胜, 崔志伟. 铁路客运专线特大桥沉降预测模型[J]. 交通运输工程学报, 2011, 11 (6): 31-36. http://transport.chd.edu.cn/article/id/201106005ZHANG Wen-sheng, CUI Zhi-wei. Settlement prediction model of super the large bridge for passenger dedicated railway[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (6): 31-36. (in Chinese). http://transport.chd.edu.cn/article/id/201106005 [15] 叶茂. 京沪高速铁路沉降监测数据处理与分析[D]. 成都: 西南交通大学, 2011.YE Mao. Theprocess and analysis of settlement monitoring data for Beijing-Shanghai high speed railway[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese). [16] AZIZ H Y, MA Jian-lin. Experimental and theoretical static analysis of high-speed railway bridge settlement for deep soft soil[J]. The Open Construction and Building Technology Journal, 2012, 6 (1): 17-31. doi: 10.2174/1874836801206010017 [17] 杨超. 基础沉降对桥梁结构的影响与裂缝控制[D]. 合肥: 合肥工业大学, 2012.YANG Chao. The influence of settlement on bridge base and the control of crack[D]. Hefei: Hefei University of Technology, 2012. (in Chinese). [18] 刘云亮. 北京超大断面隧道近距离下穿地铁高架桥影响与控制研究[D]. 北京: 北京交通大学, 2015.LIU Yun-liang. Influence and control research on super large section tunnel undercrossing closely subway bridge in Beijing[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese). [19] 梁玉. 北京某大直径盾构下穿既有地铁桥梁影响研究[D]. 北京: 北京交通大学, 2014.LIANG Yu. Impact research of a certain large-diameter shield tunnel crossing the existing subway bridge structure in Beijing[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese). [20] 周正宇. 地铁邻近既有桥梁施工影响分析及主动防护研究[D]. 北京: 北京工业大学, 2012.ZHOU Zheng-yu. research on effect and active protection of neighboring existing bridge with subway constrution[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese). [21] 张子新, 李佳宇, 周湘, 等. 近距离开挖卸荷条件下运营地铁高架桥墩响应研究[J]. 岩土力学, 2015, 36 (12): 3531-3540. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512025.htmZHANG Zi-xin, LI Jia-yu, ZHOU Xiang, et al. A study on the response of the piers of operating metro viaducts under the excavation-induced unloading condition[J]. Rock and Soil Mechanics, 2015, 36 (12): 3531-3540. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512025.htm [22] 李文勇. 深基坑开挖引起紧邻桥墩的位移分析[J]. 地下空间与工程学报, 2015, 11 (增2): 706-712, 749. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2057.htmLI Wen-yong. Analysis of pier's displacement due to the excavation of adjacent deep foundation pit[J]. Chinese Journal of Underground Space and Engineering, 2015, 11 (S2): 706-712, 749. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2057.htm [23] 丁勇春, 王建华. 深基坑施工对高架基础的变形影响及控制研究[J]. 土木工程学报, 2012, 45 (7): 155-161. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201207021.htmDING Yong-chun, WANG Jian-hua. Influence of deep excavation on deformation of elevated bridge foundations and countermeasures[J]. China Civil Engineering Journal, 2012, 45 (7): 155-161. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201207021.htm [24] LIU G B, NG C W W, WANG Z W. Observed performance of a deep multistrutted excavation in Shanghai soft clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (8): 1004-1013. [25] 丁烈云, 李炜明, 吴贤国, 等. 武汉地铁施工对轻轨桥梁影响的数值与监测分析[J]. 铁道工程学报, 2010 (11): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201011018.htmDING Lie-yun, LI Wei-ming, WU Xian-guo, et al. Study on construction plan for Wuhan Metro in key area under complex engineering environment: operational analysis of surrounding light rail bridge[J]. Journal of Railway Engineering Society, 2010 (11): 87-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201011018.htm