留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原高等级道路路基路面温度变化特征

权磊 田波 牛开民 谢晋德 何哲 张颖辉

权磊, 田波, 牛开民, 谢晋德, 何哲, 张颖辉. 青藏高原高等级道路路基路面温度变化特征[J]. 交通运输工程学报, 2017, 17(2): 21-30.
引用本文: 权磊, 田波, 牛开民, 谢晋德, 何哲, 张颖辉. 青藏高原高等级道路路基路面温度变化特征[J]. 交通运输工程学报, 2017, 17(2): 21-30.
QUAN Lei, TIAN Bo, NIU Kai-min, XIE Jin-de, HE Zhe, ZHANG Ying-hui. Temperature variation properties of pavements and subgrades for high-grade roads on Qinghai-Tibet Plateau[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 21-30.
Citation: QUAN Lei, TIAN Bo, NIU Kai-min, XIE Jin-de, HE Zhe, ZHANG Ying-hui. Temperature variation properties of pavements and subgrades for high-grade roads on Qinghai-Tibet Plateau[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 21-30.

青藏高原高等级道路路基路面温度变化特征

基金项目: 

国家科技支撑计划项目 2014BAG05B00

交通运输部建设科技项目 2013 318 490 010

交通运输部建设科技项目 2014 318 J15 070

详细信息
    作者简介:

    权磊(1987-), 男, 陕西富平人, 交通运输部公路科学研究院助理研究员, 工学博士, 从事路基路面温度场研究

    田波(1973-), 男, 陕西商州人, 交通运输部公路科学研究院研究员, 工学博士

  • 中图分类号: U412.2

Temperature variation properties of pavements and subgrades for high-grade roads on Qinghai-Tibet Plateau

More Information
    Author Bio:

    QUAN Lei(1987-), male, assistant researcher, PhD, +86-10-62079598, quanleirioh@126.com

    TIAN Bo(1973-), male, researcher, PhD, +86-10-62079598, b.tian@rioh.cn

  • 摘要: 连续观测了青藏高原多年冻土区道路结构不同层位和天然大地不同深度处温度, 分析了不同层位日均温度的时空变化趋势、实时温度的频率分布特性与不同结构层材料的冻融特性。分析结果表明: 空气、面层、基层、路基和天然大地温度年度变化趋势均呈现明显的热季与冷季之分, 转换时间分别是4月份和9月份; 观测周期年内, 沥青混凝土路面路表日平均温度为-17 ℃~40 ℃, 水泥混凝土路面路表温度为-18 ℃~17 ℃, 沥青混凝土路面下的路基顶面以下0.8 m处温度波动范围为-2.8 ℃~6.3 ℃, 水泥混凝土路面下的路基顶面下0.7 m处温度波动范围为-3.4 ℃~5.4 ℃; 空气、沥青混凝土面层、水泥混凝土面层的温度和温度梯度频率分布均呈现出明显的单峰形态, 且峰值对应的温度或温度梯度与相应的年均值存在偏差; 基层、垫层和路基的温度频率分布均呈现多峰并存的形态, 分别与冷季、热季、冷热季转换期相对应; 分析周期年内沥青混凝土路面和水泥混凝土路面的路表冻融次数分别为182、178; 沥青混凝土与水泥混凝土冻结融化持续时间频率分布均呈现主峰+多副峰的形态, 主峰对应的持续时间分别为0~2 h和18~20 h。可见, 在多年冻土区, 可优先选择水泥混凝土路面, 以利于冻土的保护, 沥青混凝土与水泥混凝土配合比设计均应验证抗冻融耐久性能。

     

  • 图  1  天然大地温度传感器布设

    Figure  1.  Temperature sensor layout of natural earth

    图  2  沥青混凝土道路温度传感器布设

    Figure  2.  Temperature sensor layout of asphalt concrete road

    图  3  水泥混凝土道路温度传感器布设

    Figure  3.  Temperature sensor layout of cement concrete road

    图  4  空气日平均温度

    Figure  4.  Daily mean temperatures of air

    图  5  沥青混凝土路面路表日平均温度

    Figure  5.  Daily mean temperatures of asphalt concrete pavement surface

    图  6  水泥混凝土路面路表日平均温度

    Figure  6.  Daily mean temperatures of cement concrete pavement surface

    图  7  路基顶面和天然地表日平均温度

    Figure  7.  Daily mean temperatures on subgrade surface and natural ground surface

    图  8  沥青混凝土道路温度分布曲线

    Figure  8.  Temperature distribution curves of asphalt concrete road

    图  9  水泥混凝土道路温度分布曲线

    Figure  9.  Temperature distribution curves of cement concrete road

    图  10  天然大地温度分布曲线

    Figure  10.  Temperature distribution curves of natural ground

    图  11  年平均温度对比

    Figure  11.  Comparison of annual mean temperatures

    图  12  空气与沥青混凝土路面温度频率分布

    Figure  12.  Temperature frequency distributions of air and asphalt concrete pavement

    图  13  空气与水泥混凝土路面温度频率分布

    Figure  13.  Temperature frequency distributions of air and cement concrete pavement

    图  14  水泥混凝土路面温度梯度频率分布

    Figure  14.  Temperature gradient frequency distributions of cement concrete pavement

    图  15  沥青混凝土路面基层与垫层温度频率分布

    Figure  15.  Temperature frequency distributions of base layer and sub-base for asphalt concrete pavement

    图  16  水泥混凝土路面基层与垫层温度频率分布

    Figure  16.  Temperature frequency distributions of base layer and sub-base for cement concrete pavement

    图  17  沥青混凝土路面的路基温度频率分布

    Figure  17.  Temperature frequency distributions of subgrade for asphalt concrete pavement

    图  18  水泥混凝土路面的路基温度频率分布

    Figure  18.  Temperature frequency distributions of subgrade for cement concrete pavement

    图  19  空气与沥青混凝土路面在冻融循环过程中正温持续时间频率分布

    Figure  19.  Frequency distributions of positive temperature lasting times of air and asphalt concrete pavement during freeze-thaw cycle

    图  20  空气与沥青混凝土路面在冻融循环过程中负温持续时间分布频率

    Figure  20.  Frequency distributions of negative temperature lasting times of air and asphalt concrete pavement during freeze-thaw cycle

    图  21  空气与水泥混凝土面层在冻融循环过程中正温持续时间分布频率

    Figure  21.  Frequency distributions of positive temperature lasting times of air and cement concrete surface during freeze-thaw cycle

    图  22  空气与水泥混凝土面层在融循环过程中负温持续时间分布频率

    Figure  22.  Frequency distributions of negative temperature lasting times of air and cement concrete surface during freeze-thaw cycle

    表  1  道路不同层位的冻融指数

    Table  1.   Freeze-thaw indexes of different layers of roads

    下载: 导出CSV
  • [1] YU Fan, QI Ji-lin, LAI Yuan-ming, et al. Typical embankment settlement/heave patterns of the Qinghai-Tibet Highway in permafrost regions: formation and evolution[J]. Engineering Geology, 2016, 214: 147-156. doi: 10.1016/j.enggeo.2016.10.013
    [2] 窦明健, 胡长顺, 何子文, 等. 青藏公路多年冻土段路基病害分布规律[J]. 冰川冻土, 2002, 24 (6): 780-784. doi: 10.3969/j.issn.1000-0240.2002.06.015

    DOU Ming-jian, HU Chang-shun, HE Zi-wen, et al. Distributing regularities of subgrade diseases in permafrost section of the Qinghai-Tibetan Highway[J]. Journal of Glaciology and Geocryology, 2002, 24 (6): 780-784. (in Chinese). doi: 10.3969/j.issn.1000-0240.2002.06.015
    [3] 刘永智, 吴青柏, 张建明, 等. 青藏高原多年冻土地区公路路基变形[J]. 冰川冻土, 2002, 24 (1): 10-15. doi: 10.3969/j.issn.1000-0240.2002.01.002

    LIU Yong-zhi, WU Qing-bai, ZHANG Jian-ming, et al. Deformation of highway roadbed in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology. 2002, 24 (1): 10-5. (in Chinese). doi: 10.3969/j.issn.1000-0240.2002.01.002
    [4] TELTAYEV B. Evaluation of low temperature cracking indicators of hot mix asphalt pavement[J]. International Journal of Pavement Research and Technology, 2014, 7 (5): 343-351.
    [5] CHOU Ya-ling, SHENG Yu, WEI Zhen-ming. Evaluation on thermal stability of embankments with different strikes in permafrost regions[J]. Cold Regions Science and Technology, 2009, 58 (3): 151-157. doi: 10.1016/j.coldregions.2009.05.007
    [6] 汪双杰, 霍明, 周文锦. 青藏公路多年冻土路基病害[J]. 公路, 2004 (5): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200405005.htm

    WANG Shuang-jie, HUO Ming, ZHOU Wen-jin. Subgrade failure of Qinghai-Tebit Highway in permafrost area[J]. Highway, 2004 (5): 22-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200405005.htm
    [7] 汪双杰, 李祝龙. 中国多年冻土地区公路修筑技术研究[J]. 公路交通科技, 2008, 25 (1): 1-9. doi: 10.3969/j.issn.1002-0268.2008.01.001

    WANG Shang-jie, LI Zhu-long. Research on highway construction technology in the permafrost region of China[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (1): 1-9. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.01.001
    [8] 汪双杰, 陈建兵. 青藏高原多年冻土路基温度场公路空间效应的非线性分析[J]. 岩土工程学报, 2008, 30 (10): 1544-1549. doi: 10.3321/j.issn:1000-4548.2008.10.021

    WANG Shuang-jie, CHEN Jian-bing. Nonlinear analysis for dimensional effects of temperature field of highway embankment in permafrost regions on Qinghai-Tibet Plateau[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (10): 1544-1549. (in Chinese). doi: 10.3321/j.issn:1000-4548.2008.10.021
    [9] 汪双杰, 吴青柏, 刘永智. 沥青路面下冻土热稳定性和热融敏感性的变化[J]. 公路交通科技, 2003, 20 (4): 20-22. doi: 10.3969/j.issn.1002-0268.2003.04.006

    WANG Shuang-jie, WU Qing-bai, LIU Yong-zhi. Change of thermal stability and thermal thawing sensitivity of frozen soil under asphalt pavement[J]. Journal of Highway and Transportation Research and Development, 2003, 20 (4): 20-22. (in Chinese). doi: 10.3969/j.issn.1002-0268.2003.04.006
    [10] 朱东鹏, 汪双杰, 司伟, 等. 青藏高原多年冻土区高等级公路路面结构温度场研究[J]. 公路交通科技, 2013, 30 (8): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201308007.htm

    ZHU Dong-peng, WANG Shuang-jie, SI Wei, et al. Study on temperature field of high-grade highway pavement structure in Qinghai-Tibet Plateau permafrost regions[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (8): 29-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201308007.htm
    [11] 陈建兵, 汪双杰, 章金钊, 等. 青藏公路空间效应与多年冻土区公路修筑技术[J]. 公路, 2008 (5): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200805002.htm

    CHEN Jian-bing, WANG Shuang-jie, ZHANG Jin-zhao, et al. Highway construction technology in permafrost regions and space effect of Qinghai-Tibet Highway[J]. Highway, 2008 (5): 1-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200805002.htm
    [12] 汪海年, 窦明健, 吴敏慧. 青藏高原冻土区路面类型对路基温度场影响的非线性分析[J]. 冰川冻土, 2005, 27 (2): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200502002.htm

    WANG Hai-nian, DOU Ming-jian, WU Min-hui. Nonlinear analysis of the influence of pavement types on embankment thermal regime in permafrost regions on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2005, 27 (2): 169-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200502002.htm
    [13] 李祝龙, 武憼民, 章金钊. 青藏公路钢纤维水泥混凝土路面的热学效应[J]. 建筑材料学报, 2000, 3 (3): 264-269. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200003016.htm

    LI Zhu-long, WU Jing-min, ZHANG Jin-zhao. Calorifics effect of the steel fiber cement concrete pavement on the Qinghai-Tibet Highway[J]. Journal of Building Materials, 2000, 3 (3): 264-269. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200003016.htm
    [14] WU Qing-bai, ZHANG Zhong-qiong, LIU Yong-zhi. Longterm thermal effect of asphalt pavement on permafrost under an embankment[J]. Cold Regions Science and Technology, 2010, 60 (3): 221-229.
    [15] 李金平, 张娟, 陈建兵, 等. 高寒冻土区路基变形演化规律与破坏特征[J]. 交通运输工程学报, 2016, 16 (4): 78-87. http://transport.chd.edu.cn/article/id/201604008

    LI Jin-ping, ZHANG Juan, CHEN Jian-bing, et al. Evolution laws and failure characteristics of subgrade deformation in alpine permafrost region[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (4): 78-87. (in Chinese). http://transport.chd.edu.cn/article/id/201604008
    [16] 刘戈, 汪双杰, 袁堃, 等. 尺度效应下冻土路基结构适应性及优化[J]. 中国公路学报, 2015, 28 (12): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512004.htm

    LIU Ge, WANG Shuang-jie, YUAN Kun, et al. Adaptability and Optimization of Permafrost Embankment Structure Under Scale Effect[J]. China Journal of Highway and Transport, 2015, 28 (12): 17-25. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512004.htm
    [17] 汪双杰, 崔福庆, 陈建兵, 等. 基于地气耦合模型的多年冻土区宽幅路基温度场数值模拟[J]. 中国公路学报, 2016, 29 (6): 169-178. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201606003.htm

    WANG Shuang-jie, CUI Fu-qing, CHEN Jian-bing, et al. Numerical simulations of temperature field for wide subgrade in permafrost regions under earth-atmosphere coupled system[J]. China Journal of Highway and Transport, 2016, 29 (6): 169-178. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201606003.htm
    [18] 汪双杰, 陈建兵, 金龙, 等. 冻土路基热收支状态的尺度效应[J]. 中国公路学报, 2015, 28 (12): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512003.htm

    WANG Shuang-jie, CHEN Jian-bing, JIN Long, et al. Scale effect of thermal budget of permafrost embankment[J]. China Journal of Highway and Transport, 2015, 28 (12): 9-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512003.htm
    [19] 穆柯, 袁堃, 金龙, 等. 高寒高海拔多年冻土区拓宽路基差异沉降[J]. 交通运输工程学报, 2016, 16 (4): 68-77. http://transport.chd.edu.cn/article/id/201604007

    MU Ke, YUAN Kun, JIN Long, et al. Differential settlement of widened subgrade in cold and high-altitude permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (4): 68-77. (in Chinese). http://transport.chd.edu.cn/article/id/201604007
    [20] 金龙, 汪双杰, 穆柯, 等. 青藏公路热棒路基降温效能[J]. 交通运输工程学报, 2016, 16 (4): 45-58. http://transport.chd.edu.cn/article/id/201604005

    JIN Long, WANG Shuang-jie, MU Ke, et al. Cooling effect of thermosyhpon subgrade for Qinghai-Tibet Highway[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (4): 45-58. (in Chinese). http://transport.chd.edu.cn/article/id/201604005
    [21] IDREES M, BURN C R, MOORE J, et al. Monitoring permafrost conditions along the Dempster Highway[C]//Canadian Geotechnical Society. 7th Canadian Permafrost Conference. Québec: Canadian Geotechnical Society, 2015: 1458-1465.
    [22] HINZMAN L D, GOERING D J, KANE D L. A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions[J]. Journal of Geophysical Research: Atmospheres, 1998, 103 (D22): 28975-28991.
    [23] FRAUENFELD O W, ZHANG Ting-jun, MCCREIGHT J L. Northern hemisphere freezing/thawing index variations over the twentieth century[J]. International Journal of Climatology, 2007, 27 (1): 47-63.
    [24] PHUKAN A. Design considerations for roadways on permafrost[R]. Fairbanks: School of Engineering University of Alaska, 1982.
    [25] DARROW M M. Thermal modeling of roadway embankments over permafrost[J]. Cold Regions Science and Technology, 2011, 65 (3): 474-487.
    [26] SABOUNDJIAN S, GOERING D J. Air convection embankments for roadways: field experimental study in Alaska[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1821 (1): 20-28.
    [27] XU Jian-feng, GOERING D J. Experimental validation of passive permafrost cooling systems[J]. Cold Regions Science and Technology, 2008, 53 (3): 283-297.
    [28] KENNEDY T W, HUBER G A, HARRIFAN R J, et al. Superior performing asphalt pavements (superpave): the product of the SHRP asphalt research program[R]. Washington DC: National Research Council, 1994.
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  685
  • HTML全文浏览量:  128
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-21
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回