留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Parametric vibration stabilityof locomotivegear transmission system with tooth surface friction

WANG Yan LIU Jian-xin LI Yi-fan YU Da-lian XIE Ming

王燕, 刘建新, 李奕璠, 虞大联, 谢鸣. 考虑齿面摩擦的机车齿轮传动系统参数振动稳定性(英文)[J]. 交通运输工程学报, 2017, 17(2): 52-63.
引用本文: 王燕, 刘建新, 李奕璠, 虞大联, 谢鸣. 考虑齿面摩擦的机车齿轮传动系统参数振动稳定性(英文)[J]. 交通运输工程学报, 2017, 17(2): 52-63.
WANG Yan, LIU Jian-xin, LI Yi-fan, YU Da-lian, XIE Ming. Parametric vibration stabilityof locomotivegear transmission system with tooth surface friction[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 52-63.
Citation: WANG Yan, LIU Jian-xin, LI Yi-fan, YU Da-lian, XIE Ming. Parametric vibration stabilityof locomotivegear transmission system with tooth surface friction[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 52-63.

考虑齿面摩擦的机车齿轮传动系统参数振动稳定性(英文)

基金项目: 

National Natural Science Foundation of China 51375403

详细信息
  • 中图分类号: U260.3

Parametric vibration stabilityof locomotivegear transmission system with tooth surface friction

Funds: 

National Natural Science Foundation of China 51375403

More Information
  • 摘要: 针对机车齿轮传动系统的参数振动问题, 建立了考虑齿面摩擦时机车齿轮传动系统的动力学模型, 基于势能原理获得了齿轮时变啮合刚度, 并利用傅里叶级数展开, 利用多尺度法进行求解, 获得了系统参数振动稳定的边界条件。最后开展实例分析, 研究了齿面摩擦因数对机车齿轮传动系统参数振动稳定性的影响。分析结果表明: 不计齿面摩擦时, 当机车速度约为119.02/j km·h-1 (j是谐波项) 时, 系统会产生参数共振, 摩擦因数越大, 对应的参数共振速度越大; 在参数共振速度附近存在系统振动不稳定区域, 当系统阻尼系数和摩擦因数均为0, 谐波项分别为1、2、3、4时, 相对于参数共振速度的波动值分别为9.16、1.46、0.53、0.55 km·h-1, 系统振动不稳定; 当阻尼系数为0时, 在对应谐波项下, 与摩擦因数为0时相比, 齿面摩擦因数分别为0.1、0.2时, 系统振动不稳定区域内相对于参数共振速度的波动值分别增加了约4.88%、9.54%;当阻尼系数为0.01时, 随着摩擦因数的增大, 在系统振动不稳定区域内相对于参数共振速度的波动值不一定增加; 摩擦因数越大, 系统稳定所需的阻尼系数越小。

     

  • Figure  1.  Axle-mounted driving system model

    Figure  2.  Model of bogie frame suspension driving system

    Figure  3.  Dynamic model of torsional vibration for locomotive gear transmission system

    Figure  4.  Non-uniform cantilever beam model of spur gear tooth

    Figure  5.  Geometrical parameters for fillet-foundation deflection

    Figure  6.  Stiffness curves in double-pair mesh area

    Figure  7.  Stiffness curves in single-pair mesh area

    Figure  8.  Time-varying mesh stiffness curves

    Figure  9.  Curves of parametric vibration stability in plane between stiffness ratio and speed

    Figure  10.  Time-domain responses when speed is 59km·h-1

    Figure  11.  Time-domain responses when speed is 62km·h-1

    Figure  12.  Time-domain responses when speed is 65km·h-1

    Figure  13.  Curves of parametric vibration stability

    Table  1.   Coefficients of Eq. (25)

    下载: 导出CSV

    Table  2.   Harmonic amplitudes and phases of mesh stiffness

    下载: 导出CSV

    Table  3.   Locomotive speeds under parametric resonance

    下载: 导出CSV

    Table  4.   Locomotive speeds in unstable regionkm·h-1

    下载: 导出CSV

    Table  5.   Fluctuation ranges relative to resonance speed

    下载: 导出CSV
  • [1] VAISHYA M, SINGH R. Analysis of periodically varying gear mesh systems with Coulomb friction using Floquet theory[J]. Journal of Sound and Vibration, 2001, 243 (3): 525-545. doi: 10.1006/jsvi.2000.3419
    [2] VAISHYA M, SINGH R. Sliding friction-induced nonlinearity and parametric effects in gear dynamics[J]. Journal of Sound and Vibration, 2001, 248 (4): 671-694. doi: 10.1006/jsvi.2001.3818
    [3] VELEX P, SAINSOT P. An analytical study of tooth friction excitations in errorless spur and helical gears[J]. Mechanism and Machine Theory, 2002, 37 (7): 641-658. doi: 10.1016/S0094-114X(02)00015-0
    [4] LUNDVALL O, STRMBERG N, KLARBRING A. A flexible multi-body approach for frictional contact in spur gears[J]. Journal of Sound and Vibration, 2004, 278 (3): 479-499. doi: 10.1016/j.jsv.2003.10.057
    [5] HE Song, GUNDA R, SINGH R. Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness[J]. Journal of Sound and Vibration, 2007, 301 (3-5): 927-949. doi: 10.1016/j.jsv.2006.10.043
    [6] HE Song, GUNDA R, SINGH R. Inclusion of sliding friction in contact dynamics model for helical gears[J]. Journal of Mechanical Design, 2007, 129 (1): 48-57. doi: 10.1115/1.2359474
    [7] HE Song, CHO S, SINGH R. Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations[J]. Journal of Sound and Vibration, 2008, 309 (3-5): 843-851. doi: 10.1016/j.jsv.2007.06.077
    [8] KAR C, MOHANTY A R. An algorithm for determination of time-varying frictional force and torque in a helical gear system[J]. Mechanism and Machine Theory, 2007, 42 (4): 482-496. doi: 10.1016/j.mechmachtheory.2006.04.007
    [9] KAR C, MOHANTY A R. Determination of time-varying contact length, friction force, torque and forces at the bearings in a helical gear system[J]. Journal of Sound and Vibration, 2008, 309 (1/2): 307-319.
    [10] LIU Gang, PARKER R G. Impact of tooth friction and its bending effect on gear dynamics[J]. Journal of Sound and Vibration, 2009, 320 (4/5): 1039-1063.
    [11] BRETHEE K F, GU Feng-shou, BALL A D. Frictional effects on the dynamic responses of gear systems and the diagnostics of tooth breakages[J]. Systems Science and Control Engineering, 2016, 4: 270-284. doi: 10.1080/21642583.2016.1241728
    [12] WANG San-min, SHEN Yun-wen, DONG Hai-jun. Chaos and bifurcation analysis of a spur gear pair with combined friction and clearance[J]. Chinese Journal of Mechanical Engineering, 2002, 38 (9): 8-11. doi: 10.3901/JME.2002.09.008
    [13] ZHU En-yong, WU Shi-jing, WANG Xiao-sun, et al. Study on nonlinear dynamic model of planetary gear train sets with friction force[J]. Journal of Vibration and Shock, 2010, 29 (8): 217-220, 236.
    [14] CHEN Si-yu, TANG Jin-yuan, LUO Cai-wang, et al. Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction[J]. Mechanism and Machine Theory, 2011, 46 (4): 466-478. doi: 10.1016/j.mechmachtheory.2010.11.016
    [15] YANG Zheng, SHANG Jian-zhong, LUO Zi-rong. Effect analysis of friction and damping on anti-backlash gear based on dynamics model with time-varying mesh stiffness[J]. Journal of Central South University, 2013, 20 (12): 3461-3470. doi: 10.1007/s11771-013-1870-7
    [16] JIANG Han-jun, SHAO Yi-min, MECHEFSKE C K. Dynamic characteristics of helical gears under sliding friction with spalling defect[J]. Engineering Failure Analysis, 2014, 39 (4): 92-107.
    [17] FENG Zhi-heng, WANG Shi-long, LEI Song, et al. Effects of time-varying friction coefficient on hypoidgear dynamics[J]. Journal of Chongqing University, 2011, 34 (12): 9-15.
    [18] ZHANG Jing, CHEN Bing-kui, KANG Chuan-zhang, et al. Dynamic analysis for spur gears considering friction effect[J]. Journal of Vibration and Shock, 2012, 31 (21): 126-132.
    [19] LI Wen-liang, WANG Li-qin. CHANG Shan, et al. Impact of tooth surface friction on harmonic resonance of gear system[J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43 (5): 1290-1294.
    [20] LI Wen-liang, WANG Li-qin. CHANG Shan, et al. Tooth friction bending effect of helical gear on gear dynamics[J]. Journal of Ship Mechanics, 2013, 17 (8): 937-943.
    [21] LI Xiao-zhen, ZHU Ru-peng, LI Zheng-min-qing, et al. Influences of frictional coefficient on vibration characteristic of face-gear transmission system[J]. Journal of Vibration Engineering, 2014, 27 (4): 583-588.
    [22] FENG Hai-sheng, WANG Li-qin, ZHENG De-zhi, et al. Analysis on high power density gear transmission efficiency considering tooth friction[J]. Journal of South China University of Technology: Natural Science Edition, 2014, 42 (9): 24-29.
    [23] SHENG Dong-ping, ZHU Ru-peng, JIN Guang-hu, et al. Bifurcation characteristic and modeling of transversetorsional spur gear vibration considering friction and multiple clearances[J]. Journal of Aerospace Power, 2015, 30 (2): 498-506.
    [24] LU Feng-xia, WANG Hao-fei, ZHU Ru-peng, et al. Dynamic characteristics analysis of double helical gear pairs considering teeth surface sliding friction[J]. Journal of Vibration and Shock, 2016, 35 (9): 204-212.
    [25] YAO Yuan, ZHAO Shi-Yin, XIAO Fei-xiong, et al. The effects of wheelset driving system suspension parameters on the readhesion performance of locomotives[J]. Vehicle System Dynamics, 2015, 53 (12): 1935-1951. doi: 10.1080/00423114.2015.1108446
    [26] THEODOSSIADES S, NATSIAVAS S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash[J]. Journal of Sound and Vibration, 2000, 229 (2): 287-310. doi: 10.1006/jsvi.1999.2490
    [27] LI Gui-xian, YU Guang-bin, WEN Jian-min, et al. Method of multiple scales in solving nonlinear dynamic differential equations of gear systems[J]. Journal of Jilin University: Engineering and Technology Edition, 2008, 38 (1): 75-79.
    [28] CHEN Zai-gang, SHAO Yi-min. Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth[J]. Engineering Failure Analysis, 2011, 18 (8): 2149-2164.
    [29] CHEN Zai-gang, SHAO Yi-min. Dynamic features of a planetary gear system with tooth crack under different sizes and inclination angles[J]. Journal of Vibration and Acoustics, 2013, 135 (3): 1-12.
    [30] SAINSOT P, VELEX P, DUVERGER O. Contribution of gear body to tooth deflections-a new bidimensional analytical formula[J]. Journal of Mechanical Design, 2004, 126 (4): 748-752.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  82
  • PDF下载量:  502
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-18
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回