留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边界层控制的高速列车减阻技术

朱海燕 张翼 赵怀瑞 邬平波 邵晓峰

朱海燕, 张翼, 赵怀瑞, 邬平波, 邵晓峰. 基于边界层控制的高速列车减阻技术[J]. 交通运输工程学报, 2017, 17(2): 64-72.
引用本文: 朱海燕, 张翼, 赵怀瑞, 邬平波, 邵晓峰. 基于边界层控制的高速列车减阻技术[J]. 交通运输工程学报, 2017, 17(2): 64-72.
ZHU Hai-yan, ZHANG Yi, ZHAO Huai-rui, WU Ping-bo, SHAO Xiao-feng. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 64-72.
Citation: ZHU Hai-yan, ZHANG Yi, ZHAO Huai-rui, WU Ping-bo, SHAO Xiao-feng. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 64-72.

基于边界层控制的高速列车减阻技术

基金项目: 

国家自然科学基金项目 51665015

江西省自然科学基金项目 20161BAB206161

西南交通大学牵引动力国家重点实验室开放基金项目 TPL1611

详细信息
    作者简介:

    朱海燕(1975-), 男, 江西新干人, 华东交通大学副教授, 从事车辆系统动力学与强度研究

  • 中图分类号: U491.51

Drag reduction technology of high-speed train based on boundary layer control

More Information
  • 摘要: 为减小高速列车在运行过程中的气动阻力, 提出一种基于边界层控制的减阻技术。以CRH3高速列车为研究对象, 通过在车体表面加设球窝非光滑表面来控制边界层的湍流特性, 实现列车运行减阻效果; 通过PRO/Engineer三维软件建立了高速列车模型、参数化的球窝模型和计算域模型, 在不影响研究效果的前提下, 对高速列车模型进行简化处理以减少数值仿真计算周期; 为使网格能够更好地贴合流线型车体和球窝非光滑表面, 采用ICEM CFD软件对计算域进行非结构网格划分; 在考虑列车表面粗糙度对气动阻力的影响工况下, 应用商业流体软件FLUENT中的k-ε湍流模型对列车在300km·h-1明线运行工况下的列车外流场进行数值仿真分析。仿真结果表明: 只在尾车加设球窝非光滑表面更有利于列车减阻, 且随球窝的半径、深度和阵列距离的增大, 列车的气动阻力均呈先下降后上升的趋势; 当球窝阵列距离为350mm, 球窝半径为80mm, 球窝深度为10mm时, 球窝非光滑表面的减阻效果最好, 此时气动阻力为2 220.4N, 没有加设球窝非光滑表面的列车气动阻力为2 967.9N, 减阻率可达25.19%。可见, 采用球窝非光滑表面来改变边界层湍流特性是降低列车气动阻力的有效途径。

     

  • 图  1  车辆模型

    Figure  1.  Vehicle model

    图  2  计算域

    Figure  2.  Computation zero

    图  3  球窝几何模型

    Figure  3.  Ball socket geometrical model

    图  4  球窝非光滑表面

    Figure  4.  Non-smooth surface with ball sockets

    图  5  计算域网格模型

    Figure  5.  Grid model of computation zeros

    图  6  球窝网格模型

    Figure  6.  Grid model of ball sockets

    图  7  列车加设球窝的气动阻力

    Figure  7.  Aerodynamic drags of train with ball sodcets

    图  8  球窝阵列距离对列车气动阻力的影响

    Figure  8.  Influence of array distance of ball sockets on aerodynamic drag of train

    图  9  球窝深度对列车气动阻力的影响

    Figure  9.  Influence of depth of ball sockets on aerodynamic drag of train

    图  10  球窝半径对列车气动阻力的影响

    Figure  10.  Influence of radius of ball socket on aerodynamic drag of train

    图  11  车头速度矢量

    Figure  11.  Velocity vector in front of vehicle

    图  12  车头压力

    Figure  12.  Pressure in front of vehicle

    图  13  车尾速度矢量

    Figure  13.  Velocity vector in rear of vehicle

    图  14  车尾压力

    Figure  14.  Pressure in rear of vehicle

    图  15  球窝内的速度矢量

    Figure  15.  Velocity vector in ball socket

    图  16  球窝内的压力

    Figure  16.  Pressure in ball socket

    图  17  没有加设球窝的车尾速度矢量

    Figure  17.  Velocity vector in rear of train without ball sockets

    图  18  加设球窝的车尾速度矢量

    Figure  18.  Velocity vector in rear of train with ball sockets

    表  1  边界条件

    Table  1.   Boundary conditions

    下载: 导出CSV

    表  2  不同表面粗糙度下列车的气动阻力

    Table  2.   Aerodynamic drags of train with different surface roughnesses N

    下载: 导出CSV
  • [1] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6 (1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001

    TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6 (1): 1-9. (in Chinese). doi: 10.3321/j.issn:1671-1637.2006.01.001
    [2] RAGHUANATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38 (6/7): 469-514.
    [3] 崔涛, 张卫华. 高速列车侧风安全域计算方法[J]. 交通运输工程学报, 2011, 11 (5): 42-48. http://transport.chd.edu.cn/article/id/201105007

    CUI Tao, ZHANG Wei-hua. Calculation method of cross wind security domain for high speed train[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (5): 42-48. (in Chinese). http://transport.chd.edu.cn/article/id/201105007
    [4] 姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34 (7): 18-23. doi: 10.3969/j.issn.1001-8360.2012.07.003

    YAO Shuan-bao, GUO Di-long, YANG Guo-wei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34 (7): 18-23. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.07.003
    [5] 肖京平, 黄志祥, 陈立. 高速列车空气动力学研究技术综述[J]. 力学与实践, 2013, 35 (2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201302000.htm

    XIAO Jing-ping, HUANG Zhi-xiang, CHEN Li. Review of aerodynamic investigations for high speed train[J]. Mechanics in Engineering, 2013, 35 (2): 1-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201302000.htm
    [6] 梁习锋, 田红旗, 邹建军. 动力车纵向气动力风洞试验及数值模拟[J]. 国防科技大学学报, 2003, 25 (6): 101-105. doi: 10.3969/j.issn.1001-2486.2003.06.023

    LIANG Xi-feng, TIAN Hong-qi, ZOU Jian-jun. The wind tunnel test and numerical simulation of longitudinal aerodynamic force of the traction car[J]. Journal of National University of Defense Technology, 2003, 25 (6): 101-105. (in Chinese). doi: 10.3969/j.issn.1001-2486.2003.06.023
    [7] 黄志祥, 陈立, 蒋科林. 高速列车空气动力学特性的风洞试验研究[J]. 铁道车辆, 2011, 49 (12): 1-5. doi: 10.3969/j.issn.1002-7602.2011.12.001

    HUANG Zhi-xiang, CHEN Li, JIANG Ke-lin. The wind tunnel test and research on aerodynamics characteristics of high speed trains[J]. Rolling Stock, 2011, 49 (12): 1-5. (in Chinese). doi: 10.3969/j.issn.1002-7602.2011.12.001
    [8] 邵微. 高速列车头车空气动力学结构优化研究[D]. 大连: 大连交通大学, 2014.

    SHAO Wei. Research on the optimization of the aerodynamic structure of high-speed train[D]. Dalian: Dalian Jiaotong University, 2014. (in Chinese).
    [9] 张在中, 周丹. 不同头部外形高速列车气动性能风洞试验研究[J]. 中南大学学报: 自然科学版, 2013, 44 (6): 2603-2608. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306058.htm

    ZHANG Zai-zhong, ZHOU Dan. Wind tunnel experiment on aerodynamic characteristic of streamline head of high speed train with different head shapes[J]. Journal of Central South University: Science and Technology, 2013, 44 (6): 2603-2608. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306058.htm
    [10] 黄志祥, 陈立, 蒋科林. 高速列车减小空气阻力措施的风洞试验研究[J]. 铁道学报, 2012, 34 (4): 16-21. doi: 10.3969/j.issn.1001-8360.2012.04.003

    HUANG Zhi-xiang, CHEN Li, JIANG Ke-lin. Wind tunnle test of air drag reduction schemes of high-speed trains[J]. Journal of the China Railway Society, 2012, 34 (4): 16-21. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.04.003
    [11] BECHERT D W, BRUSE M, HAGE W. Experiments with three-dimensional riblets as an idealized model of shark skin[J]. Experiments in Fluids, 2000, 28 (5): 403-412. doi: 10.1007/s003480050400
    [12] BEARMAN P W, HARVEY J K. Control of circular cylinder flow by the use of dimples[J]. AIAA Journal, 1993, 31 (10): 1753-1756. doi: 10.2514/3.11844
    [13] VISWANATH P R. Aircraft viscous drag reduction using riblets[J]. Progress in Aerospace Sciences, 2002, 38 (6): 571-600.
    [14] LIM H C, LEE S J. Flow control of a circular cylinder with O-rings[J]. Fluid Dynamics Research, 2004, 35 (2): 107-122. doi: 10.1016/j.fluiddyn.2004.05.001
    [15] EFROS V, KROGSTAD P. Development of a turbulent boundary layer after a step from smooth to rough surface[J]. Experiments in Fluids, 2011, 51 (6): 1563-1575. doi: 10.1007/s00348-011-1167-2
    [16] REN Hui-ying, WU Yan-hua. Turbulent boundary layers over smooth and rough forward-facing steps[J]. Physics of Fluids, 2011, 23(4): 10.1063/1.3576911.
    [17] 任露泉, 张成春, 田丽梅. 仿生非光滑用于旋成体减阻的试验研究[J]. 吉林大学学报: 工学版, 2005, 35 (4): 431-436. doi: 10.3321/j.issn:1671-5489.2005.04.008

    REN Lu-quan, ZHANG Cheng-chun, TIAN Li-mei. Experimental study on drag reduction for bodies of revolution using bionic non-smoothness[J]. Journal of Jilin University: Engineering and Technology Edition, 2005, 35 (4): 431-436. (in Chinese). doi: 10.3321/j.issn:1671-5489.2005.04.008
    [18] 蔡圣康. 车身非光滑表面边界层流场特性及侧风减阻分析[D]. 长沙: 湖南大学, 2016.

    CAI Sheng-kang. Flow field characteristics within nonsmooth surface boundary layer on car-body and aerodynamic drag reduction analysis under cross wind[D]. Changsha: Hunan University, 2016. (in Chinese).
    [19] 张国耕. 车身仿生非光滑表面气动减阻特性研究[D]. 杭州: 浙江大学, 2010.

    ZHANG Guo-geng. Mechanism research on aerodynamic drag reduction of vehicle body with bionic non-smooth surfaces[D]. Hangzhou: Zhejiang University, 2010. (in Chinese).
    [20] 孙朋朋. 高速列车非光滑车身气动减阻特性研究[D]. 杭州: 浙江大学, 2012.

    SUN Peng-peng. Research on aerodynamic drag reduction of high-speed train with non-smooth surface[D]. Hangzhou: Zhejiang University, 2012. (in Chinese).
    [21] 杜健, 龚明, 田爱琴, 等. 基于仿生非光滑沟槽的高速列车减阻研究[J]. 铁道科学与工程学报, 2014, 11 (5): 70-76. doi: 10.3969/j.issn.1672-7029.2014.05.013

    DU Jian, GONG Ming, TIAN Ai-qin, et al. Study on the drag reduction of the high-speed train based on the bionic non-smooth riblets[J]. Journal of Railway Science and Engineering, 2014, 11 (5): 70-76. (in Chinese). doi: 10.3969/j.issn.1672-7029.2014.05.013
    [22] 汪久根, 陈仕洪. Koch雪花表面织构设计与高铁空气摩擦噪声分析[J]. 机械工程学报, 2014, 50 (7): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201407011.htm

    WANG Jiu-gen, CHEN Shi-hong. Bionic design of Koch snowflake surface texture and its effects on air frictional noise of high speed train[J]. Journal of Mechanical Engineering, 2014, 50 (7): 70-73. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201407011.htm
    [23] 张渊. 非光滑高速列车表面减阻研究[D]. 成都: 西南交通大学, 2016.

    ZHANG Yuan. Research on the drag reduction of high-speed train with non-smooth surface[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese).
    [24] 何正凯. 动车组空气动力学数值模拟及降阻研究[D]. 大连: 大连交通大学, 2010.

    HE Zheng-kai. The aerodynamic numerical simulation and study on drag reduction of EMU[D]. Dalian: Dalian Jiaotong University, 2010. (in Chinese).
    [25] 郑循皓, 张继业, 张卫华. 高速列车转向架空气阻力的数值模拟[J]. 交通运输工程学报, 2011, 11 (2): 45-51. doi: 10.3969/j.issn.1671-1637.2011.02.008

    ZHENG Xun-hao, ZHANG Ji-ye, ZHANG Wei-hua. Numerical simulation of aerodynamic drag for high-speed train bogie[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (2): 45-51. (in Chinese). doi: 10.3969/j.issn.1671-1637.2011.02.008
    [26] SCHETZ J A. Aerodynamics of high-speed trains[J]. Advances in Mechanics, 2001, 33 (3): 371-414.
    [27] 武青海, 周虹伟, 朱勇更. 高速列车湍流流场数值仿真计算探讨[J]. 铁道学报, 2002, 24 (3): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200203022.htm

    WU Qing-hai, ZHOU Hong-wei, ZHU Yong-geng. Research on numerical simulation calculation for high speed train in turbulence field[J]. Journal of the China Railway Society, 2002, 24 (3): 99-103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200203022.htm
    [28] BAKER C J, JONES J, LOPEZ-CALLEJA F, et al. Measurement of the cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92 (7): 547-563.
    [29] SUZUKI M, TANEMOTO K, MAEDA T. Aerodynamic characteristics of train/vehicles under cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (1/2): 209-218.
    [30] 夏超, 单西壮, 杨志刚, 等. 风洞地面效应对高速列车空气动力学特性的影响[J]. 铁道学报, 2015, 37 (4): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201504003.htm

    XIA Chao, SHAN Xi-zhuang, YANG Zhi-gang, et al. Influence of ground effect in wind tunnel on aerodynamics of high speed train[J]. Journal of the China Railway Society, 2015, 37 (4): 8-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201504003.htm
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  266
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-12
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回