留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于STL模型的船舶静水剪力与弯矩计算方法

刘春雷 尹勇 孙霄峰 张秀凤 神和龙

刘春雷, 尹勇, 孙霄峰, 张秀凤, 神和龙. 基于STL模型的船舶静水剪力与弯矩计算方法[J]. 交通运输工程学报, 2017, 17(2): 73-82.
引用本文: 刘春雷, 尹勇, 孙霄峰, 张秀凤, 神和龙. 基于STL模型的船舶静水剪力与弯矩计算方法[J]. 交通运输工程学报, 2017, 17(2): 73-82.
LIU Chun-lei, YIN Yong, SUN Xiao-feng, ZHANG Xiu-feng, SHEN He-long. Calculation method of still water shear force and bending moment based on STL model[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 73-82.
Citation: LIU Chun-lei, YIN Yong, SUN Xiao-feng, ZHANG Xiu-feng, SHEN He-long. Calculation method of still water shear force and bending moment based on STL model[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 73-82.

基于STL模型的船舶静水剪力与弯矩计算方法

基金项目: 

国家863计划项目 2015AA016404

国家海洋公益性行业专项经费项目 201505017-4

详细信息
    作者简介:

    刘春雷(1987-), 男, 河北保定人, 大连海事大学工学博士研究生, 从事船舶工程研究

    尹勇(1969-), 男, 辽宁大连人, 大连海事大学教授, 工学博士

  • 中图分类号: U661.2

Calculation method of still water shear force and bending moment based on STL model

More Information
  • 摘要: 为了提高船舶强度计算精度, 提出了一种基于STL模型的船舶静水剪力与弯矩计算方法。在计算总纵强度时, 采用常规算法计算船舶浮态初值, 然后采用迭代算法计算船舶吃水、横倾角与吃水差; 按照船舶肋位切割船舶外壳得到每个肋位的横剖面, 采用格林公式计算每个剖面水下部分的面积, 纵向积分得到浮力曲线; 通过对船舶舱室STL模型的切割, 离线建立每个舱室的质量分布表, 用舱室实际质量分布代替梯形分布来计算船舶质量分布曲线; 最后基于散货船“太行128”和“SPRING COSMOS”, 通过浮力与质量分布曲线计算了5种典型载况下的剪力与弯矩。计算结果表明: 计算值与采用软件NAPA的设计值相比, 剪力与弯矩的平均误差约为1%, 最大误差为2.6%, 计算误差较小, 因此, 船舶静水剪力与弯矩计算方法精度较高; 采用浮态迭代算法只需计算出船舶任意浮态下的排水体积与浮心坐标, 程序实现简单、稳定与可靠; 静水剪力与弯矩计算方法适用于船舶任意浮态, 通过直接切割船舶外壳计算船舶浮力曲线, 弥补了常规方法只能计算船舶纵向强度的不足; 通过建立舱室的质量分布表与采用舱室的实际质量分布代替传统的梯形分布, 减少了计算量, 提高了计算精度。

     

  • 图  1  “SPRING COSMOS”的STL模型

    Figure  1.  STL model of"SPRING COSMOS"

    图  2  “太行128”的STL模型

    Figure  2.  STL model of"TAIHANG 128"

    图  3  误差计算结果

    Figure  3.  Calculation result of errors

    图  4  剪力与弯矩计算过程

    Figure  4.  Calculation process of shear force and bending moment

    图  5  平均迭代次数

    Figure  5.  Mean iteration numbers

    图  6  船舶外壳纵向切割结果

    Figure  6.  Longitudinal cutting result of hull

    图  7  舱室切割结果

    Figure  7.  Cutting result of cabin

    图  8  肋位间的舱室块

    Figure  8.  Cabin block between ribs

    图  9  按照装货高度切割的舱室块

    Figure  9.  Cutting cabin block according to loading height

    图  10  压载出港的质量分布曲线

    Figure  10.  Mass distribution curves at ballasting departure

    图  11  船艏部分质量分布曲线

    Figure  11.  Part mass distribution curves of stern

    图  12  均质货到港的质量分布曲线

    Figure  12.  Mass distribution curves under homogeneous arrival

    图  13  质量分布计算误差

    Figure  13.  Calculation errors of mass distribution

    图  14  压载出港剪力与弯矩相对误差

    Figure  14.  Relative error of shear forces and bending moments under ballasting departure

    图  15  满载到港剪力与弯矩相对误差

    Figure  15.  Relative errors of shear forces and bending moments under fully loaded arrival

    图  16  五种典型载况计算误差

    Figure  16.  Calculation errors under 5typical loading conditions

    图  17  许用剪力与弯矩相对误差

    Figure  17.  Relative errors of allowable shear forces and bending moments

    图  18  散货船配载仪主界面

    Figure  18.  Main interface of bulk carrier's loading computer

    表  1  随机装载试验结果

    Table  1.   Random loading test result

    下载: 导出CSV

    表  2  “SPRING COSMOS”浮态计算结果

    Table  2.   Floating state calculation result of"SPRING COSMOS"

    下载: 导出CSV

    表  3  “SHANDONG RENHE”浮态计算结果

    Table  3.   Floating state calculation result of"SHANDONG RENHE"

    下载: 导出CSV

    表  4  表 4“太行128”第1货舱质量分布

    Table  4.   Mass distribution of cargo hold 1of"TAIHANG 128"

    下载: 导出CSV
  • [1] PAIK J K, MANSOUR A E. A simple formulation for predicting the ultimate strength of ships[J]. Journal of Marine Science and Technology, 1995, 1 (1): 52-62. doi: 10.1007/BF01240013
    [2] GORDO J M, SOARES C G, FAULKNER D. Approximate assessment of the ultimate longitudinal strength of the hull girder[J]. Journal of Ship Research, 1996, 40 (1): 60-69. doi: 10.5957/jsr.1996.40.1.60
    [3] TALMON A M, BEZUIJEN A. Calculation of longitudinal bending moment and shear force for Shanghai Yangtze River Tunnel: application of lessons from Dutch research[J]. Tunnelling and Underground Space Technology, 2013, 35 (3): 161-171.
    [4] SHU Z, MOAN T. Ultimate hull girder strength of a bulk carrier under combined global and local loads in the hogging and alternate hold loading condition using nonlinear finite element analysis[J]. Journal of Marine Science and Technology, 2012, 17 (1): 94-113. doi: 10.1007/s00773-011-0147-9
    [5] 王峰, 陈毓珍, 张青敏. 全船有限元简化方法在总纵强度计算中的应用[J]. 船舶与海洋工程, 2014 (1): 24-27. doi: 10.3969/j.issn.2095-4069.2014.01.005

    WANG Feng, CHEN Yu-zhen, ZHANG Qing-min. Application of a simplified finite element method of whole ship in total longitudinal strength computation[J]. Naval Architecture and Ocean Engineering, 2014 (1): 24-27. (in Chinese). doi: 10.3969/j.issn.2095-4069.2014.01.005
    [6] 黄敏. 3 000DWT甲板货船总纵强度计算分析[J]. 中国水运, 2013, 13 (11): 28-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201311015.htm

    HUANG Min. Total longitudinal strength calculation analysis of 3 000DWT vdeck cargo[J]. China Water Transport, 2013, 13 (11): 28-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201311015.htm
    [7] 孙一方. 基于NURBS技术的散货船配载仪设计[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    SUN Yi-fang. Design of the bulk carrier loading software based on NURBS technology[D]. Harbin: Harbin Engineering University, 2012. (in Chinese).
    [8] 郭雷. 驳船配载系统工程问题研究[D]. 大连: 大连理工大学, 2012.

    GUO Lei. Research on the system of engineering problems for barge stowage[D]. Dalian: Dalian University of Technology, 2012. (in Chinese).
    [9] 杨义益. 基于NAPA考虑挠度的甲板货船总纵强度校核系统研究[D]. 镇江: 江苏科技大学, 2011.

    YANG Yi-yi. Research on program system for the longitudinal strength of deck cargo ship considering deflection based on NAPA[D]. Zhenjiang: Jiangsu University of Science and Technology, 2011. (in Chinese).
    [10] 肖红文, 刘家新. 江海直达货船总纵强度规范计算与研究[J]. 船海工程, 2011, 40 (6): 35-39. doi: 10.3963/j.issn.1671-7953.2011.06.010

    XIAO Hong-wen, LIU Jia-xin. Calculation and analysis on longitudinal strength of rive-to-sea ship[J]. Ship and Ocean Engineering, 2011, 40 (6): 35-39. (in Chinese). doi: 10.3963/j.issn.1671-7953.2011.06.010
    [11] 徐瑜. 基于沿海货船的总纵强度研究[D]. 大连: 大连海事大学, 2009.

    XU Yu. Research of longitudinal strength based on coastal vessel[D]. Dalian: Dalian Maritime University, 2009. (in Chinese).
    [12] 杨彩虹. 船用装载仪相关技术的研究与开发[D]. 哈尔滨: 哈尔滨工程大学, 2009.

    YANG Cai-hong. Research and development of loading computer for ships[D]. Harbin: Harbin Engineering University, 2009. (in Chinese).
    [13] 韩永波. 基于数字型值表的船舶强度校核与装载仪设计[D]. 大连: 大连海事大学, 2007.

    HAN Yong-bo. Strength check and stowage system design of ship based on digital table of offsets[D]. Dalian: Dalian Maritime University, 2007. (in Chinese).
    [14] 姜广煜, 谢云平, 刘可峰, 等. 基于NAPA大宽深比船舶总纵强度计算方法与分析[J]. 江苏科技大学学报: 自然科学版, 2007, 21: 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB2007S1007.htm

    JIANG Guang-yu, XIE Yun-ping, LIU Ke-feng, et al. Calculation and analysis of longitudinal strength of great breadth depth ratio ship based on NAPA[J]. Journal of Jiangsu University of Science and Technology: Natural Science Edition, 2007, 21: 21-23. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB2007S1007.htm
    [15] RONG Lei, CUI Jian-hui. Comparison between vessel's displacements calculated by Bonjean curves and Hydrostatic curves[J]. Applied Mechanics and Materials, 2013, 278-280 (1): 35-39.
    [16] WANG Xiao-zhi, MOAN T. Stochastic and deterministic combinations of still water and wave bending moments in ships[J]. Marine Structures, 1996, 9 (8): 787-810. doi: 10.1016/0951-8339(95)00022-4
    [17] HANSCH D L. Methods of determining the longitudinal weight distribution of a ship[C]//Society of Allied Weight Engineers. 67th Annual conference of International Society of Allied Weight Engineers. Seattle: Society of Allied Weight Engineers, 2008: 2-19.
    [18] 刘春雷, 尹勇, 孙霄峰, 等. 基于STL模型的船舶几何特性计算[J]. 系统仿真学报, 2015, 27 (10): 2264-2271. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201510006.htm

    LIU Chun-lei, YIN Yong, SUN Xiao-feng, et al. Calculation of vessel's geometric properties based on STL model[J]. Journal of System Simulation, 2015, 27 (10): 2264-2271. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201510006.htm
    [19] 段兴锋, 任鸿翔, 东昉. 纵倾状态船舶浮态的研究与计算[J]. 中国航海, 2015, 38 (1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201501014.htm

    DUAN Xing-feng, REN Hong-xiang, DONG Fang. Calculation of floating condition of a longitudinal inclined ship[J]. Navigation of China, 2015, 38 (1): 54-57. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201501014.htm
    [20] 刘春雷, 尹勇, 孙霄峰, 等. 船舶浮态计算的一种修正方法[J]. 大连海事大学学报, 2014, 40 (4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201404001.htm

    LIU Chun-lei, YIN Yong, SUN Xiao-feng, et al. A modified method to ship floating calculation[J]. Journal of Dalian Maritime University, 2014, 40 (4): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201404001.htm
    [21] CHEN Jing, LIN Yan, HUO Jun-zhou, et al. Optimization of ship's subdivision arrangement for offshore sequential ballast water exchange using a non-dominated sorting genetic algorithm[J]. Ocean Engineering, 2010, 37 (11/12): 978-988.
    [22] CHEN Jing, LIN Yan, HUO Jun-zhou, et al. Optimal ballast water exchange sequence design using symmetrical multitank strategy[J]. Journal of Marine Science And Technology, 2010, 15 (3): 280-293. doi: 10.1007/s00773-010-0087-9
    [23] 赵晓非, 林焰. 关于解船舶浮态问题的矩阵方法[J]. 中国造船, 1985 (3): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC198503005.htm

    ZHAO Xiao-fei, LIN Yan. Matrix methods for solving ship floating state problem[J]. Shipbuilding of China, 1985 (3): 57-66. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC198503005.htm
    [24] 林焰, 李铁骊, 纪卓尚. 破损船舶自由浮态计算[J]. 大连理工大学学报, 2001, 41 (1): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200101021.htm

    LIN Yan, LI Tie-li, JI Zhuo-shang. Ship damage floating calculation[J]. Journal of Dalian University of Technology, 2001, 41 (1): 85-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200101021.htm
    [25] 马坤, 张明霞, 纪卓尚. 基于非线性规划法的船舶浮态计算[J]. 大连理工大学学报, 2003, 43 (3): 329-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200303016.htm

    MA Kun, ZHANG Ming-xia, JI Zhuo-shang. Ship floating calculation based on nonlinear programming[J]. Journal of Dalian University of Technology, 2003, 43 (3): 329-331. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200303016.htm
    [26] 孙承猛, 刘寅东. 船舶浮态计算的一种优化方法[J]. 大连海事大学学报, 2006, 32 (2): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200602010.htm

    SUN Cheng-meng, LIU Yan-dong. Optimization method for ship's floating condition calculation[J]. Journal of Dalian Maritime University, 2006, 32 (2): 39-41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200602010.htm
    [27] 陆丛红, 林焰, 纪卓尚. 遗传算法在船舶自由浮态计算中的应用[J]. 上海交通大学学报, 2005, 39 (5): 701-705. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200505009.htm

    LU Cong-hong, LIN Yan, JI Zhuo-shang. Application of genetic algorithm in ship free floatation calculation[J]. Journal of Shanghai Jiaotong University, 2005, 39 (5): 701-705. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200505009.htm
    [28] LU Cong-hong, LIN Yan, JI Zhuo-shang. Free trim calculation using genetic algorithm based on NURBS shipform[J]. International Shipbuilding Progress, 2007, 54 (1): 45-62.
    [29] CALABRESE F, MANCARELLA L, ZIZZARI A A, et al. A multidisciplinary method for evaluating ship stability[J]. Journal of Shipping and Ocean Engineering, 2012 (6): 321-326.
    [30] AZCUETA R. Computation of turbulent free-surface flows around ships and floating bodies[J]. Ship Technology Research, 2002, 49: 999-1022.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  2023
  • HTML全文浏览量:  831
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-12
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回