留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

起重船舶压载水调配优化模型

刘志杰 刘晓宇 熊伟 林成新

刘志杰, 刘晓宇, 熊伟, 林成新. 起重船舶压载水调配优化模型[J]. 交通运输工程学报, 2017, 17(2): 83-89.
引用本文: 刘志杰, 刘晓宇, 熊伟, 林成新. 起重船舶压载水调配优化模型[J]. 交通运输工程学报, 2017, 17(2): 83-89.
LIU Zhi-jie, LIU Xiao-yu, XIONG Wei, LIN Cheng-xin. Optimization model of ballast water allocation for crane ship[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 83-89.
Citation: LIU Zhi-jie, LIU Xiao-yu, XIONG Wei, LIN Cheng-xin. Optimization model of ballast water allocation for crane ship[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 83-89.

起重船舶压载水调配优化模型

基金项目: 

项科研基金项目 20122125120013

中央高校基本科研业务费专项资金项目 3132016069

中央高校基本科研业务费专项资金项目 3132016354

详细信息
    作者简介:

    刘志杰(1979-), 男, 山东莱阳人, 大连海事大学副教授, 工学博士, 从事海洋装备可靠性设计与优化研究

  • 中图分类号: U674.35

Optimization model of ballast water allocation for crane ship

More Information
    Author Bio:

    LIU Zhi-jie(1979-), male, associate professor, PhD, +86-411-84724292, liuzj2003@163.com

  • 摘要: 基于船舶静力学和优化理论, 以起重船舶各压载舱室液位变化量为优化变量, 压载舱压载水总调配量最小为优化目标, 起重调配过程船体平衡为约束条件, 建立了起重船舶压载水调配优化模型, 利用MATLAB优化了具有8个压载舱室的起重船舶压载水调配过程, 以降低起重船舶能耗。计算结果表明: 根据工程经验设计的调配方案在调配过程中仅使用3个压载舱室, 通过将1号舱室压载水调配到2、8号舱室, 即满足调配过程中船体平衡要求, 虽然采用优化模型在调配过程中使用了7个舱室, 将1、3、4、5、6号舱室压载水调配至2、8号舱室, 但总调配量比经验方案降低了21%;在经验方案和优化方案中, 压载水调配量均在吊机回转角为0°时最大, 分别达到了487.5、256.0t, 因而在该时刻起重船舶应缓慢加载和调配, 以防止加载过快而引起船体的倾斜; 在调配过程中, 当某压载舱室水位降低为0时, 会引起下一时刻压载水调配量的突变, 吊装货物时吊机在该时刻需缓慢运行, 保证压载系统能调配足够压载水, 以保证船体平衡, 避免造成严重后果。

     

  • 图  1  起重船舶自由液面舱室稳性

    Figure  1.  Free-surface tank stability of crane ship

    图  2  起重船舶压载舱室布置

    Figure  2.  Ballast tank arrangement of crane ship

    图  3  工程经验方案中压载舱室水位变化曲线

    Figure  3.  Changing curves of ballast tanks'water levels in empirical design scheme

    图  4  优化方案中压载舱室水位变化曲线

    Figure  4.  Changing curves of ballast tanks'water levels in optimization design scheme

    图  5  压载水调配量变化曲线

    Figure  5.  Changing curves of ballast water allotment masses

    表  1  起重船舶参数

    Table  1.   Parameters of crane ship

    下载: 导出CSV

    表  2  压载水位

    Table  2.   Ballast water levels

    下载: 导出CSV
  • [1] 张昊, 王辉, 何宁. 海洋工程大型起重设备及其关键技术研究[J]. 海洋工程, 2009, 27 (4): 130-139. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC200904022.htm

    ZHANG Hao, WANG Hui, HE Ning. Analysis of the key technology of the offshore engineering lift system and the crane[J]. The Ocean Engineering, 2009, 27 (4): 130-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC200904022.htm
    [2] 潘德位, 林成新, 孙德平, 等. 大倾角搁浅船舶扳正过程分析[J]. 交通运输工程学报, 2015, 15 (2): 50-58. doi: 10.3969/j.issn.1671-1637.2015.02.008

    PAN De-wei, LIN Cheng-xin, SUN De-ping, et al. Uprighting process analysis of big-angle tilted aground ship[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (2): 50-58. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.02.008
    [3] WIECZOREK A J, NEGRO S O, HARMSEN R, et al. A review of the European offshore wind innovation system[J]. Renewable and Sustainable Energy Reviews, 2013, 26 (10): 294-306.
    [4] 张志明, 徐丹铮, 张超, 等. 大型起重船船型开发的若干技术问题初探[J]. 船舶, 2005 (1): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200501002.htm

    ZHANG Zhi-ming, XU Dan-zheng, ZHANG Chao, et al. Technical problems in ship type development of large crane ship[J]. Ship and Boat, 2005 (1): 10-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200501002.htm
    [5] AHN D, SHIN S C, KIM S Y, et al. Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9 (1): 45-54. doi: 10.1016/j.ijnaoe.2016.07.004
    [6] 陈雷, 李含苹. 超大型起重船压载调载系统研究设计[J]. 船舶, 2010 (1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ201001010.htm

    CHEN Lei, LI Han-ping. Research and design of ballast system for super large pontoon crane[J]. Ship and Boat, 2010 (1): 34-38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ201001010.htm
    [7] 黄超. 大型驳船型起重船的复合压载管路系统的优化研究[D]. 上海: 上海交通大学, 2012,

    HUANG Chao. Optimization study on ballast pipe system for large barge crane vessel[D]. Shanghai: Shanghai Jiaotong University. (in Chinese).
    [8] WRIGHT D A, DAWSON R, ORANO-DAWSON C E, et al. A test of the efficacy of a ballast water treatment system aboard the vessel Coral Princess[J]. Marine Technology, 2007, 44 (1): 57-67.
    [9] KLUG S. A control-system for an ultra-high-speed ballasting equipment[C]//Offshore Technology Conference. Proceedings of the Eleventh Annual OTC. Houston: Offshore Technology Conference, 1979: 307-314.
    [10] WOODS S A, BAUER R J, SETO M L. Automated ballast tank control system for autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2012, 37 (4): 727-739. doi: 10.1109/JOE.2012.2205313
    [11] 张茴栋, 何炎平. 全回转起重船压载舱的优化探索[J]. 中国造船, 2010, 51 (2): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201002024.htm

    ZHANG Hui-dong, HE Yan-ping. Study on optimizing ballast tanks for revolving derrick barge[J]. Shipbuilding of China, 2010, 51 (2): 175-183. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201002024.htm
    [12] 张茴栋, 何炎平, 李洪亮. 基于数值分析法的压载舱的优化设计[J]. 船舶工程, 2010, 32 (2): 60-63, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201002017.htm

    ZHANG Hui-dong, HE Yan-ping, LI Hong-liang. Optimal design of ballast tanks based on numerical analysis method[J]. Ship Engineering, 2010, 32 (2): 60-63, 42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201002017.htm
    [13] 李树敏. 大型海洋起重平台工作状态下压载水调配的实验研究[D]. 大连: 大连海事大学, 2013.

    LI Shu-min. Ballast experiment study of submersible crane vessel on working status[D]. Dalian: Dalian Maritime University, 2013. (in Chinese).
    [14] CHEN Jing, LIN Yan, HUO Jun-zhou, et al. Optimization of ship's subdivision arrangement for offshore sequential ballast water exchange using a non-dominated sorting genetic algorithm[J]. Ocean Engineering, 2010, 37 (11/12): 978-988.
    [15] 雷坤, 林焰, 纪卓尚. 基于内点法的驳船接载配载方案优化模型[J]. 中国造船, 2010, 51 (2): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201002020.htm

    LEI Kun, LIN Yan, JI Zhuo-shang. Optimization of ballast plan based on interior-point method in barge for load-out[J]. Shipbuilding of China, 2010, 51 (2): 149-154. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201002020.htm
    [16] 夏华波, 纪卓尚, 张明霞. 改进遗传算法在驳船配载中的应用[J]. 中国舰船研究, 2010, 5 (6): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201006011.htm

    XIA Hua-bo, JI Zhuo-shang, ZHANG Ming-xia. Application of Improved Genetic Algorithm in barge stowage planning analysis[J]. Chinese Journal of Ship Research, 2010, 5 (6): 51-55. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201006011.htm
    [17] SAMYN L M, PAULO J, CUNHA V S. Dynamic model of a semi-submersible platform for the development of ballast control systems[J]. IFAC Proceedings Volumes, 2009, 42 (18): 146-151.
    [18] MANZI M, SOLTANI B, GUERLAIN S, et al. Designing a ballast control system operator interface[C]//IEEE. 2005IEEE Design Symposium, Systems and Information Engineering. New York: IEEE, 2005: 242-248.
    [19] BARA C, CORNOIU M, POPESCU D. An optimal control strategy of ballast system used in ship stabilization[C]//IEEE. 20th Mediterranean Conference on Control and Automation. New York: IEEE, 2012: 878-883.
    [20] KURNIAWAN A, HARDIANTO, KOENHARDONO E S, et al. Modeling and control of ballast system to improve stability of catamaran boat[C]//IEEE. 2015International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation. New York: IEEE, 2015: 202-204.
    [21] LIU Yin-shui, ZHAO Xu-feng, WU De-fa, et al. Study on the control methods of a water hydraulic variable ballast system for submersible vehicles[J]. Ocean Engineering, 2015, 108: 648-661.
    [22] ZHAO Xu-feng, LIU Yin-shui, HAN Ming-xing, et al. Improving the performance of an AUV hovering system by introducing low-cost flow rate control into water hydraulic variable ballast system[J]. Ocean Engineering, 2016, 125: 155-169.
    [23] GOLZ M, BOECK F, RITZ S, et al. A ballast system for automated deep-sea ascents[C]//ASME. 35th International Conference on Ocean, Offshore and Article Engineering. New York: ASME, 2016: 1-5.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  967
  • HTML全文浏览量:  286
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-15
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回