留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

货运繁重公路的车辆荷载谱和疲劳车辆模型

祝志文 黄炎 向泽

祝志文, 黄炎, 向泽. 货运繁重公路的车辆荷载谱和疲劳车辆模型[J]. 交通运输工程学报, 2017, 17(3): 13-24.
引用本文: 祝志文, 黄炎, 向泽. 货运繁重公路的车辆荷载谱和疲劳车辆模型[J]. 交通运输工程学报, 2017, 17(3): 13-24.
ZHU Zhi-wen, HUANG Yan, XIANG Ze. Vehicle loading spectrum and fatigue truck models of heavy cargo highway[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 13-24.
Citation: ZHU Zhi-wen, HUANG Yan, XIANG Ze. Vehicle loading spectrum and fatigue truck models of heavy cargo highway[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 13-24.

货运繁重公路的车辆荷载谱和疲劳车辆模型

基金项目: 

国家自然科学基金项目 51278191

国家973计划项目 2015CB057701

国家973计划项目 2015CB057702

湖南省交通科技项目 201522

详细信息
    作者简介:

    祝志文(1968-), 男, 湖南益阳人, 湖南大学教授, 工学博士, 从事桥梁工程研究

  • 中图分类号: U441.2

Vehicle loading spectrum and fatigue truck models of heavy cargo highway

More Information
    Author Bio:

    ZHU Zhiwen(1968-), male, professor, PhD, +86-731-88823649, zwzhu@hnu.edu.cn

  • 摘要: 为研究货运繁重公路的车辆荷载谱和疲劳车辆模型, 基于佛山平胜大桥的动态称重系统采集的多时段车流数据, 归类出了车辆荷载谱的10类代表车型, 分析了代表车型的轴距、质量、轴重和超载数据, 以及沿不同车道的车辆和轴重分布特性, 提出了可用于钢桥疲劳评估的车辆荷载谱; 以疲劳加载率最大的六轴车辆为原型, 基于疲劳损伤等效原则分别提出了桥梁单向重载车道的疲劳车辆模型和简化疲劳车辆模型。计算结果表明: 平胜大桥呈现货运繁重公路的典型特征, 车辆日均通行总量达到了45 065veh, 约为《AASHTO LRFD》定义的日均通行量20 000veh的2.3倍; 疲劳车辆在全部交通流中的比例为51.6%, 为《AASHTO LRFD》定义的20.0%的2.6倍; 货车占疲劳车辆总数的45.2%, 主要分布于重载车道, 而且通行货车超载比例占到相应车型的30%70%, 最大超载货车达到了132.5t;两轴货车超载率为29.0%, 等效质量达到17.5t, 后轴等效轴重达到12.1t, 因而不能忽略两轴货车的疲劳加载贡献。对比《AASHTO LRFD》五轴标准疲劳车辆模型(前轴轴重为2.6t, 中间双联轴和后面双联轴的单轴轴重均为5.4t) 和简化标准疲劳车辆模型(前轴为2.6t, 中轴和后轴均为10.8t), 提出的六轴单向疲劳车辆模型总质量为33.1t, 前轴轴重为3.6t, 中间双联轴和后面三联轴的单轴轴重均为5.9t;简化单向疲劳车辆模型的前轴轴重为3.6t, 中轴和后轴分别为11.8、17.7t;针对重载车道提出的六轴疲劳车辆模型总质量达到了36.5t, 前轴轴重为4.0t, 联轴中的单轴轴重均为6.5t;对应的重载车道简化疲劳车模型的前轴轴重为4.0t, 中轴和后轴轴重分别为13.0、19.5t。

     

  • 图  1  桥梁立面

    Figure  1.  Bridge elevation

    图  2  桥梁横断面

    Figure  2.  Bridge cross section

    图  3  车辆日通行量

    Figure  3.  Daily traffic volumes

    图  4  不同轴数车辆日通行量

    Figure  4.  Daily traffic volumes of different numbers of axles

    图  5  两轴代表车型车辆质量分布

    Figure  5.  Mass distributions of representative two-axle vehicles

    图  6  三轴代表车型车辆质量分布

    Figure  6.  Mass distributions of representative three-axle vehicles

    图  7  四轴代表车型车辆质量分布

    Figure  7.  Mass distributions of representative four-axle vehicles

    图  8  五轴代表车型车辆质量分布

    Figure  8.  Mass distributions of representative five-axle vehicles

    图  9  六轴代表车型车辆质量分布

    Figure  9.  Mass distributions of representative six-axle vehicles

    图  10  代表车型V2轴重和等效轴重

    Figure  10.  Axle loads and equivalent axle loads of representative V2 vehicle type

    图  11  代表车型V3轴重和等效轴重

    Figure  11.  Axle loads and equivalent axle loads of representative V3 vehicle type

    图  12  代表车型V4轴重和等效轴重

    Figure  12.  Axle loads and equivalent axle loads of representative V4 vehicle type

    图  13  代表车型V5轴重和等效轴重

    Figure  13.  Axle loads and equivalent axle loads of representative V5 vehicle type

    图  14  代表车型V6轴重和等效轴重

    Figure  14.  Axle loads and equivalent axle loads of representative V6 vehicle type

    图  15  代表车型V7轴重和等效轴重

    Figure  15.  Axle loads and equivalent axle loads of representative V7 vehicle type

    图  16  代表车型V8轴重和等效轴重

    Figure  16.  Axle loads and equivalent axle loads of representative V8 vehicle type

    图  17  代表车型V9轴重和等效轴重

    Figure  17.  Axle loads and equivalent axle loads of representative V9 vehicle type

    图  18  代表车型V10轴重和等效轴重

    Figure  18.  Axle loads and equivalent axle loads of representative V10 vehicle type

    图  19  代表车型V11轴重和等效轴重

    Figure  19.  Axle loads and equivalent axle loads of representative V11 vehicle type

    图  20  1#车道轴重分布与等效轴重

    Figure  20.  Axle load distribution and equivalent axle load on lane 1

    图  21  2#车道轴重分布与等效轴重

    Figure  21.  Axle load distribution and equivalent axle load on lane 2

    图  22  3#车道轴重分布与等效轴重

    Figure  22.  Axle load distribution and equivalent axle load on lane 3

    图  23  4#车道轴重分布与等效轴重

    Figure  23.  Axle load distribution and equivalent axle load on lane 4

    图  24  5#车道轴重分布与等效轴重

    Figure  24.  Axle load distribution and equivalent axle load on lane 5

    图  25  建议的单向疲劳车辆模型

    Figure  25.  Suggested one-direction fatigue truck model

    图  26  AASHTO LRFD标准疲劳车辆模型

    Figure  26.  Standard fatigue truck model of AASHTO LRFD

    图  27  建议的单向简化疲劳车辆模型

    Figure  27.  Suggested one-direction simplified fatigue truck model

    图  28  AASHTO LRFD简化的标准疲劳车辆模型

    Figure  28.  Simplified standard fatigue truck model of AASHTO LRFD

    图  29  建议的重载车道疲劳车辆模型

    Figure  29.  Suggested fatigue truck models on heavy traffic lanes

    表  1  车辆数据

    Table  1.   Vehicle data

    下载: 导出CSV

    表  2  车辆模型

    Table  2.   Vehicle types

    下载: 导出CSV

    表  3  超载车辆统计

    Table  3.   Statistics of overweight vehicles

    下载: 导出CSV

    表  4  各代表车型车道分布

    Table  4.   Distribution of representive vehicles type on lanes

    下载: 导出CSV

    表  5  单向车辆荷载谱与疲劳加载贡献Fig.5 One-direction vehicular load spectrums and fatigue loading contributions

    下载: 导出CSV
  • [1] FU Gong-kang, HAG-ELSAFI O. Vehicular overloads: load model, bridge safety and permit checking[J]. Journal of Bridge Engineering, 2000, 5 (1): 49-57. doi: 10.1061/(ASCE)1084-0702(2000)5:1(49)
    [2] 祝志文, 黄炎, 向泽, 等. 货运繁重公路正交异性板钢桥弧形切口的疲劳性能[J]. 中国公路学报, 2017, 30 (3): 104-112. doi: 10.3969/j.issn.1001-7372.2017.03.011

    ZHU Zhi-wen, HUANG Yan, XIANG Ze, et al. Fatigue performance of floorbeam cutout detail of orthotropic steel bridge on heavy freight transportation highway[J]. China Journal of Highway and Transport, 2017, 30 (3): 104-112. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.011
    [3] 潘鹏, 李全旺, 周怡斌, 等. 某公路大桥车辆荷载调查与局部疲劳分析[J]. 土木工程学报, 2011, 44 (5): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201105013.htm

    PAN Peng, LI Quan-wang, ZHOU Yi-bin, et al. Vehicle survey and local fatigue analysis of a highway bridge[J]. China Civil Engineering Journal, 2011, 44 (5): 94-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201105013.htm
    [4] CHOTICKAI P, BOWMAN M D. Truck models for improved fatigue life predictions of steel bridges[J]. Journal of Bridge Engineering, 2006, 11 (1): 71-80. doi: 10.1061/(ASCE)1084-0702(2006)11:1(71)
    [5] HAIDER S W, HARICHANDRAN R S. Relating axle load spectra to truck gross vehicle weights and volumes[J]. Journal of Transportation Engineering, 2007, 133 (12): 696-705. doi: 10.1061/(ASCE)0733-947X(2007)133:12(696)
    [6] LAMAN J A, NOWAK A S. Fatigue-load models for girder bridges[J]. Journal of Structural Engineering, 1996, 122 (7): 726-733. doi: 10.1061/(ASCE)0733-9445(1996)122:7(726)
    [7] COHEN H, FU Gong-kang, DEKELBAB W, et al. Predicting truck load spectra under weight limit changes and its application to steel bridge fatigue assessment[J]. Journal of Bridge Engineering, 2003, 8 (5): 312-322. doi: 10.1061/(ASCE)1084-0702(2003)8:5(312)
    [8] OBRIEN E J, ENRIGHT B, GETACHEW A. Importance of the tail in truck weight modeling for bridge assessment[J]. Journal of Bridge Engineering, 2010, 15 (2): 210-213. doi: 10.1061/(ASCE)BE.1943-5592.0000043
    [9] ZHAO Jian, TABATABAI H. Evaluation of a permit vehicle model using weigh-in-motion truck records[J]. Journal of Bridge Engineering, 2012, 17 (2): 389-392. doi: 10.1061/(ASCE)BE.1943-5592.0000250
    [10] FIORILLO G, GHOSN M. Procedure for statistical categorization of overweight vehicles in a WIM database[J]. Journal of Transportation Engineering, 2014, 140 (5): 1-11.
    [11] LEAHY C, OBRIEN E J, ENRIGHT B, et al. Review of HL-93bridge traffic load model using an extensive WIM database[J]. Journal of Bridge Engineering, 2015, 20 (10): 1-8.
    [12] HAN W S, WU J, CAI C S, et al. Characteristics and dynamic impact of overloaded extra heavy trucks on typical highway bridges[J]. Journal of Bridge Engineering, 2014, 20 (2): 1-11.
    [13] 周泳涛, 鲍卫刚, 翟辉, 等. 公路钢桥疲劳设计荷载标准研究[J]. 土木工程学报, 2010, 43 (11): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201011014.htm

    ZHOU Yong-tao, BAO Wei-gang, ZHAI Hui, et al. Study of standard fatigue design load for steel highway bridges[J]. China Civil Engineering Journal, 2010, 43 (11): 79-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201011014.htm
    [14] 尹兴. 工业化中后期地区超重车辆现状评估预测及标准疲劳车研究[D]. 广州: 广州大学, 2016.

    YIN Xing. Prediction ofoverweight vehicles and research on standard fatigue vehicle load in middle and late industrialized regions[D]. Guangzhou: Guangzhou University, 2016. (in Chinese).
    [15] CHEN B, ZHONG Z, XIE X. Site-specific fatigue load spectrum for urban bridges[C]∥TRB. 14th COTA International Conference of Transportation Professionals. Washington: TRB, 2014: 1501-1060.
    [16] 李星新, 任伟新, 钟继卫. 西南山区高速公路桥梁标准疲劳车辆荷载研究[J]. 振动与冲击, 2012 (15): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201215021.htm

    LI Xing-xin, REN Wei-xin, ZHONG Ji-wei. Standard fatigue truck on montane speedway bridge[J]. Journal of Vibration and Shock, 2012, 31 (15): 96-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201215021.htm
    [17] 夏叶飞, 李峰峰, 顾煜, 等. 基于WIM的高速公路桥梁车辆疲劳荷载谱研究[J]. 公路交通科技, 2014, 31 (3): 56-64. doi: 10.3969/j.issn.1002-0268.2014.03.010

    XIA Ye-fei, LI Feng-feng, GU Yu, et al. Study on vehicular fatigue load spectrum expressway bridge based on WIM system[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (3): 56-64. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.03.010
    [18] 李松辉, 徐忠燕, 蒋含莞. 超重车辆对公路桥梁安全性的影响[J]. 公路交通科技, 2015, 32 (9): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201509012.htm

    LI Song-hui, XU Zhong-yan, JIANG Han-wan. Influence of overweight vehicles on bridge safety[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (9): 74-79. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201509012.htm
    [19] 孟书涛. 超载与我国现有公路工程技术水平的不适应性分析[J]. 公路交通科技, 2004, 21 (3): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200403036.htm

    MENG Shu-tao. Theinadaptability analysis of overloading traffic with the level of highway engineering technology[J]. Journal of Highway and Transportation Research and Development, 2004, 21 (3): 137-140. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200403036.htm
    [20] 祝志文, 黄炎, 文鹏翔, 等. 随机车流下钢-UHPC组合正交异性桥面疲劳性能研究[J]. 中国公路学报, 2017, 30 (3): 200-209. doi: 10.3969/j.issn.1001-7372.2017.03.022

    ZHU Zhi-wen, HUANG Yan, WEN Peng-xiang, et al. Investigation onfatigue performance of orthotropic bridge deck with steel-UHPC composite system under random traffic flows[J]. China Journal of Highway and Transport, 2017, 30 (3): 200-209. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.022
    [21] 李传习, 李游, 陈卓异, 等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报, 2017, 30 (3): 121-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703013.htm

    LI Chuan-xi, LI You, CHEN Zhuo-yi, et al. Fatigue cracking reason and detail dimension of reinforcement about transverse diaphragm of steel box girder[J]. China Journal of Highway and Transport, 2017, 30 (3): 121-131. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703013.htm
    [22] ZHU Zhi-wen, HUANG Yan, CHEN Wei, et al. Investigation on base metal cracking on diaphragm cutout at self-anchored suspension bridges[C]∥TRB. The 4th Orthotropic Bridge Conference. Washington DC: TRB, 2015: 125-136.
    [23] XIANG Ze, ZHU Zhi-wen, HUANG Yan, et al. FEM analysis on fatigue cracking mechanism of diaphragm cutout in orthotropic steel decks[C]∥TRB. The 4th Orthotropic Bridge Conference. Washington DC: TRB, 2015: 291-302.
    [24] SHAO Xu-dong, YI Du-tao, HUANG Zheng-yu, et al. Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer[J]. Journal of Bridge Engineering, 2013, 18 (5): 417-428.
    [25] 王春生, 王雨竹, 崔冰, 等. 应力比对钢桥腹板间隙面外变形疲劳性能的影响试验[J]. 中国公路学报, 2017, 30 (3): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703008.htm

    WANG Chun-sheng, WANG Yu-zhu, CUI Bing, et al. Experiment on effect of stress ratio on out-of-plane distortioninduced fatigue performance of web gaps in steel bridges[J]. China Journal of Highway and Transport, 2017, 30 (3): 72-81. (in Chinese. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703008.htm
  • 加载中
图(29) / 表(5)
计量
  • 文章访问数:  615
  • HTML全文浏览量:  107
  • PDF下载量:  1076
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回