Linear-elastic analysis method of ultimate bearing capacity of dumbbell-shaped CFST arch rib
-
摘要: 为了提高哑铃型钢管混凝土拱肋极限承载力的计算效率, 提出了极限承载力分析的高效自适应弹性模量缩减法; 根据连续条件和截面塑性承载性能, 建立了钢管混凝土哑铃型构件压弯承载力相关方程, 通过回归分析得到了相应的齐次广义屈服函数; 采用单一组合材料梁单元建立了拱肋的线弹性有限元迭代模型, 通过自适应缩减高承载单元弹性模量模拟结构在加载过程中的刚度损伤, 确定拱肋的极限承载力, 并与模型试验、非线性有限元法和等效梁柱法计算结果进行了对比。计算结果表明: 建立的齐次广义屈服函数计算结果稳定、可靠, 克服了传统广义屈服函数计算结果受荷载初始值影响的缺陷; 采用自适应弹性模量缩减法只需较少的离散单元数与迭代步数即可获得稳定的极限承载力, 且与模型试验结果误差小于3%, 计算耗时小于16s, 相对非线性有限元法具有良好的计算精度和效率; 哑铃形截面拱肋相比圆形截面拱肋具有更好的承载性能, 矢跨比、含钢率和荷载作用方式是影响钢管混凝土拱肋极限承载力的重要因素; 随着矢跨比增大, 极限承载力增速减缓; 随着含钢率增大, 极限承载力几乎呈线性增长; 随着集中力与均布力比值增大, 其对极限承载力的影响逐渐减弱; 轴力与弯矩是拱肋的主要内力, 随着矢跨比增大, 弯矩对极限承载力的影响更加显著。Abstract: In order to improve the computational efficiency of ultimate bearing capacity of dumbbell-shaped CFST (concrete filled steel tube) arch rib, a high-efficiency self-adaptive elastic modulus reduction method (EMRM) was proposed to analyze the ultimate bearing capacity. Based on the continuity conditions and the plastic bearing property of section, the correlation equations of compressing-bending capacity of dumbbell-shaped component for CFST were established, and the corresponding homogeneous generalized yield function (HGYF) wasdetermined by means of regression analysis. A linear-elastic finite element iterative model of arch rib was developed by using simplex beam element with combined material parameters, and the elastic modulus of highly loaded element was reduced through self-adaption to simulate the structural stiffness damage in the loading process, so as to confirm the ultimate bearing capacity of arch rib. The proposed method was compared with model test, non-linear finite element method and equivalent beam-column method. Calculation result shows that the calculation result of HGYF is stable and reliable, and the impact of initial loads on the calculation result of traditional generalized yield function is overcomed. The proposed method has higher accuracy and efficiency than the nonlinear finite element method, the stable ultimate bearing capacity is obtained by only small amount of discretized meshes and iteration steps, the relative error is less than 3% compared with test result data, and the computation time is less than 16 s. Compared with the circular section arch rib, the dumbbell-shaped CFST arch rib has better bearing property, and the main influence factors are rise-span ratio, steel ratio and loading condition. The increasing speed of ultimate bearing capacity reduces with the increase of rise-span ratio. With the increase of steel ratio, the ultimate bearing capacity increases almost linearly. The larger the ratio of concentrated load to uniform load is, the less its influence on the bearing capacity is. The axial force and bending moment are the governing internal forces of arch rib, while the bending moment becomes more significant with the increase of rise-span ratio.
-
表 1 计算值与试验值比较
Table 1. Comparison between calculation values and test data
表 2 残差平方和与均方差
Table 2. Residual sums of squares and mean square errors
表 3 极限承载力比较
Table 3. Comparison of ultimate bearing capacities kN
表 4 哑铃型拱肋极限承载力
Table 4. Ultimate bearing capacities of dumbbell-shaped arch rib kN
-
[1] CHEN Bao-chun, CHEN Kang-ming, NAKAMURA S, et al. A survey of steel arch bridges in China[J]. Journal of Civil Engineering and Architecture, 2011, 5 (9): 799-808. [2] 曾国锋, 范立础, 章关永. 应用复合梁单元实现钢管混凝土拱桥的极限承载力分析[J]. 铁道学报, 2003, 25 (5): 97-102. doi: 10.3321/j.issn:1001-8360.2003.05.019ZENG Guo-feng, FAN Li-chu, ZHANG Guan-yong. Load capacity analysis of concrete filled steel tube arch bridge with the composite beam element[J]. Journal of the China Railway Society, 2003, 25 (5): 97-102. (in Chinese). doi: 10.3321/j.issn:1001-8360.2003.05.019 [3] 陈宝春, 盛叶. 钢管混凝土哑铃形拱面内极限承载力研究[J]. 工程力学, 2009, 26 (9): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200909018.htmCHEN Bao-chun, SHENG Ye. Research on load-carrying capacity of concrete filled steel tubular dumbbell shaped rib arch under in-plane loads[J]. Engineering Mechanics, 2009, 26 (9): 94-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200909018.htm [4] 曾国锋. 钢管混凝土系杆拱桥极限承载力研究[D]. 上海: 同济大学, 2003.ZENG Guo-feng. Study of ultimate load bearing capacity for concrete-filled steel tube tied arch bridge[D]. Shanghai: Tongji University, 2003. (in Chinese). [5] 巩美杰. 哑铃型钢管混凝土拱助面内极限承载力分析[D]. 成都: 西南交通大学, 2011.GONG Mei-jie. The in-plane ultimate bearing capacity analysis for arch rib of dumbbell shaped concrete filled steel tubular[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese). [6] 李艳, 赵均海, 张常光, 等. 哑铃型钢管混凝土拱肋极限承载力研究[J]. 计算力学学报, 2015, 32 (1): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201501017.htmLI Yan, ZHAO Jun-hai, ZHANG Chang-guang, et al. Study of ultimate bearing capacity of dumbbell shaped concrete filled tubular arch rib[J]. Chinese Journal of Computational Mechanics, 2015, 32 (1): 99-106. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201501017.htm [7] 周水兴, 刘琪, 陈湛荣. 钢管初应力对哑铃型钢管砼拱桥承载力影响分析[J]. 工程力学, 2008, 25 (7): 159-165, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200807032.htmZHOU Shui-xing, LIU Qi, CHEN Zhan-rong. Effect of initial stress on bearing capacity of dumbbell concrete-filled steel tube arch bridge[J]. Engineering Mechanics, 2008, 25 (7): 159-165, 178. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200807032.htm [8] 严圣友, 郑江敏, 项贻强, 等. 哑铃型钢管混凝土拱桥的计算方法研究[J]. 公路交通科技, 2004, 21 (6): 54-57. doi: 10.3969/j.issn.1002-0268.2004.06.015YAN Sheng-you, ZHENG Jiang-min, XIANG Yi-qiang, et al. Study on calculating methods of dumbbell-shaped CFST arch bridge[J]. Journal of Highway and Transportation Research and Development, 2004, 21 (6): 54-57. (in Chinese). doi: 10.3969/j.issn.1002-0268.2004.06.015 [9] 张建民. 大跨度钢管混凝土拱桥承载能力与施工控制研究[D]. 广州: 华南理工大学, 2001.ZHANG Jian-min. Bearing capacity and construction control research of long-span concrete filled steel tubular arch bridges[D]. Guangzhou: South China University of Technology, 2001. (in Chinese). [10] MACKENZIE D, BOYLE J T, HAMILTON R. The elastic compensation method for limit and shakedown analysis: a review[J]. Journal of Strain Analysis for Engineering Design, 2000, 35 (3): 171-188. doi: 10.1243/0309324001514332 [11] SESHADRI R, HOSSAIN M M. Simplified limit load determination using the mα-tangent method[J]. Journal of Pressure Vessel Technology, 2009, 131 (2): 287-294. [12] CHEN Li-jie, LIU Ying-hua, YANG Pu, et al. Limit analysis of structures containing flaws based on a modified elastic compensation method[J]. European Journal of Mechanics, 2008, 27 (2): 195-209. doi: 10.1016/j.euromechsol.2007.05.010 [13] 张伟, 杨绿峰, 韩晓凤. 基于弹性补偿有限元法的无梁岔管安全评价[J]. 水利学报, 2009, 40 (10): 1175-1183. doi: 10.3321/j.issn:0559-9350.2009.10.004ZHANG Wei, YANG Lu-feng, HAN Xiao-feng. Safety evaluation of shell type bifurcated pipes using elastic compensation finite element method[J]. Journal of Hydraulic Engineering, 2009, 40 (10): 1175-1183. (in Chinese). doi: 10.3321/j.issn:0559-9350.2009.10.004 [14] YANG Lu-feng, YU Bo, QIAO Yong-ping. Elastic modulus reduction method for limit load evaluation of frame structures[J]. Acta Mechanica Solida Sinica, 2009, 22 (2): 109-115. doi: 10.1016/S0894-9166(09)60095-1 [15] YANG Lu-feng, YU Bo, JU J W. Incorporated strength capacity technique for limit load evaluation of trusses and framed structures under constant loading[J]. Journal of Structural Engineering, 2015, 141 (11): 1-11. [16] YANG Lu-feng, LI Qi, ZHANG Wei, et al. Homogeneous generalized yield criterion based elastic modulus reduction method for limit analysis of thin-walled structures with angle steel[J]. Thin-Walled Structures, 2014, 80: 153-158. doi: 10.1016/j.tws.2014.02.030 [17] SHI J, BOYLE J T, MACKENZIE D, et al. Approximate limit design of frames using elastic analysis[J]. Computers and Structures, 1996, 61 (3): 495-501. doi: 10.1016/0045-7949(96)00095-8 [18] HAMILTON R, BOYLE J T. Simplified lower bound limit analysis of transversely loaded thin plates using generalised yield criteria[J]. Thin-Walled Structures, 2002, 40 (6): 503-522. doi: 10.1016/S0263-8231(02)00007-1 [19] MARTIN-ARTIEDA C C, DARGUSH G F. Approximate limit load evaluation of structural frames using linear elastic analysis[J]. Engineering Structures, 2007, 29 (3): 296-304. doi: 10.1016/j.engstruct.2006.03.013 [20] 涂凌. 钢管砼拱桥承载力计算[J]. 重庆交通学院学报, 1999, 18 (2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT902.001.htmTU Ling. The bearing capacity calculation of the CFST arch bridges[J]. Journal of Chongqing Jiaotong Institute, 1999, 18 (2): 8-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT902.001.htm [21] 韦建刚, 陈宝春. 钢管混凝土拱桥拱肋刚度设计取值分析[J]. 交通运输工程学报, 2008, 8 (2): 34-39. http://transport.chd.edu.cn/article/id/200802008WEI Jian-gang, CHEN Bao-chun. Analysis on rib rigidity of concrete filled tubular arch bridge[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (2): 34-39. (in Chinese). http://transport.chd.edu.cn/article/id/200802008 [22] 陈宝春, 肖泽荣, 韦建刚. 钢管混凝土哑铃形偏压构件试验研究[J]. 工程力学, 2005, 22 (2): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX20050200G.htmCHEN Bao-chun, XIAO Ze-rong, WEI Jian-gang. Experimental study of concrete-filled steel tubular dumbbell shaped columns under eccentric loads[J]. Engineering Mechanics, 2005, 22 (2): 89-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX20050200G.htm [23] 陈宝春, 黄福云, 盛叶. 钢管混凝土哑铃形短柱轴压试验研究[J]. 工程力学, 2005, 22 (1): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200501032.htmCHEN Bao-chun, HUANG Fu-yun, SHENG Ye. Experimental study of concrete-filled steel tubular dumbbell shaped short columns under concentric loads[J]. Engineering Mechanics, 2005, 22 (1): 187-194. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200501032.htm [24] 盛叶. 哑铃形钢管混凝土受弯构件极限承载力算法[J]. 安徽工业大学学报: 自然科学版, 2010, 27 (2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-HDYX201002017.htmSHENG Ye. Calculation method on load-carrying capacity of dumbbell shaped concrete filled steel tubular flexural member[J]. Journal of Anhui University of Technology: Natural Science, 2010, 27 (2): 163-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDYX201002017.htm [25] 盛叶, 陈宝春, 韦建刚. 新型钢管混凝土哑铃形偏压短柱试验研究[J]. 福州大学学报: 自然科学版, 2007, 35 (2): 276-280. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ200702025.htmSHENG Ye, CHEN Bao-chun, WEI Jian-gang. Experimental research on concrete filled steel tubular stubs with new type dumbbell section under eccentrical loads[J]. Journal of Fuzhou University: Natural Science, 2007, 35 (2): 276-280. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ200702025.htm [26] 杨绿峰, 李琦, 张伟, 等. 圆管截面齐次广义屈服函数与结构极限承载力[J]. 计算力学学报, 2013, 30 (5): 693-698. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305017.htmYANG Lu-feng, LI Qi, ZHANG Wei, et al. Homogeneous generalized yield function of circular tube section for ultimate bearing capacity of thin-walled structures[J]. Chinese Journal of Computational Mechanics, 2013, 30 (5): 693-698. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305017.htm [27] 杨绿峰, 吴文龙, 余波. 一种不依赖失效路径的结构体系可靠度分析方法[J]. 中国科学: 物理学力学天文学, 2014, 44 (11): 1220-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201411010.htmYANG Lu-feng, WU Wen-long, YU Bo. A failure-path independent method for analysis of structural system reliability[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2014, 44 (11): 1220-1231. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201411010.htm