留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

哑铃型钢管混凝土拱肋极限承载力的线弹性分析方法

杨绿峰 解威威 郑健 张伟

杨绿峰, 解威威, 郑健, 张伟. 哑铃型钢管混凝土拱肋极限承载力的线弹性分析方法[J]. 交通运输工程学报, 2017, 17(3): 25-35.
引用本文: 杨绿峰, 解威威, 郑健, 张伟. 哑铃型钢管混凝土拱肋极限承载力的线弹性分析方法[J]. 交通运输工程学报, 2017, 17(3): 25-35.
YANG Lu-feng, JIE Wei-wei, ZHENG Jian, ZHANG Wei. Linear-elastic analysis method of ultimate bearing capacity of dumbbell-shaped CFST arch rib[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 25-35.
Citation: YANG Lu-feng, JIE Wei-wei, ZHENG Jian, ZHANG Wei. Linear-elastic analysis method of ultimate bearing capacity of dumbbell-shaped CFST arch rib[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 25-35.

哑铃型钢管混凝土拱肋极限承载力的线弹性分析方法

基金项目: 

国家自然科学基金项目 51478125

国家自然科学基金项目 51469004

广西自然科学基金项目 2012GXNSFEA053002

详细信息
    作者简介:

    杨绿峰(1966-), 男, 河南鲁山人, 广西大学教授, 工学博士, 从事工程结构的安全性和耐久性研究

    通讯作者:

    张伟(1977-), 男, 四川达县人, 广西大学教授, 工学博士

  • 中图分类号: U441.4

Linear-elastic analysis method of ultimate bearing capacity of dumbbell-shaped CFST arch rib

More Information
    Author Bio:

    YANG Lu-feng(1966-), male, professor, PhD, +86-771-2366109, lfyang@gxu.edu.c

    ZHANG Wei(1977-), male, professor, PhD, +86-771-3235070, zh.ei@163.com

  • 摘要: 为了提高哑铃型钢管混凝土拱肋极限承载力的计算效率, 提出了极限承载力分析的高效自适应弹性模量缩减法; 根据连续条件和截面塑性承载性能, 建立了钢管混凝土哑铃型构件压弯承载力相关方程, 通过回归分析得到了相应的齐次广义屈服函数; 采用单一组合材料梁单元建立了拱肋的线弹性有限元迭代模型, 通过自适应缩减高承载单元弹性模量模拟结构在加载过程中的刚度损伤, 确定拱肋的极限承载力, 并与模型试验、非线性有限元法和等效梁柱法计算结果进行了对比。计算结果表明: 建立的齐次广义屈服函数计算结果稳定、可靠, 克服了传统广义屈服函数计算结果受荷载初始值影响的缺陷; 采用自适应弹性模量缩减法只需较少的离散单元数与迭代步数即可获得稳定的极限承载力, 且与模型试验结果误差小于3%, 计算耗时小于16s, 相对非线性有限元法具有良好的计算精度和效率; 哑铃形截面拱肋相比圆形截面拱肋具有更好的承载性能, 矢跨比、含钢率和荷载作用方式是影响钢管混凝土拱肋极限承载力的重要因素; 随着矢跨比增大, 极限承载力增速减缓; 随着含钢率增大, 极限承载力几乎呈线性增长; 随着集中力与均布力比值增大, 其对极限承载力的影响逐渐减弱; 轴力与弯矩是拱肋的主要内力, 随着矢跨比增大, 弯矩对极限承载力的影响更加显著。

     

  • 图  1  哑铃型CFST构件

    Figure  1.  Dumbbell-shaped CFST component

    图  2  GYF和HGYF

    Figure  2.  GYF and HGYF

    图  3  哑铃型拱肋

    Figure  3.  Dumbbell-shaped arch rib

    图  4  收敛性分析结果

    Figure  4.  Convergence analysis result

    图  5  EMRM迭代过程

    Figure  5.  Iteration process of EMRM

    图  6  哑铃型拱计算模型

    Figure  6.  Calculation models of dumbbell-shape arch rib

    图  7  截面

    Figure  7.  Cross section

    图  8  不同加载方式下EMRM收敛曲线

    Figure  8.  Convergence curves of EMRM under different loading modes

    图  9  不同加载方式下EMRM迭代过程

    Figure  9.  Iteration processes of EMRM under different loading modes

    图  10  极限承载力与矢跨比关系

    Figure  10.  Relationship between ultimate bearing capacity and rise-span ratio

    图  11  极限承载力与含钢率关系曲线

    Figure  11.  Relationship between ultimate bearing capacity and steel ratio

    图  12  加载方式

    Figure  12.  Loading condition

    图  13  极限承载力与荷载工况关系

    Figure  13.  Relationship between ultimate bearing capacity and loading modes

    图  14  极限承载力与截面形式和内力的关系

    Figure  14.  Relationships between ultimate bearing capacity and cross section, internal force

    表  1  计算值与试验值比较

    Table  1.   Comparison between calculation values and test data

    下载: 导出CSV

    表  2  残差平方和与均方差

    Table  2.   Residual sums of squares and mean square errors

    下载: 导出CSV

    表  3  极限承载力比较

    Table  3.   Comparison of ultimate bearing capacities kN

    下载: 导出CSV

    表  4  哑铃型拱肋极限承载力

    Table  4.   Ultimate bearing capacities of dumbbell-shaped arch rib kN

    下载: 导出CSV
  • [1] CHEN Bao-chun, CHEN Kang-ming, NAKAMURA S, et al. A survey of steel arch bridges in China[J]. Journal of Civil Engineering and Architecture, 2011, 5 (9): 799-808.
    [2] 曾国锋, 范立础, 章关永. 应用复合梁单元实现钢管混凝土拱桥的极限承载力分析[J]. 铁道学报, 2003, 25 (5): 97-102. doi: 10.3321/j.issn:1001-8360.2003.05.019

    ZENG Guo-feng, FAN Li-chu, ZHANG Guan-yong. Load capacity analysis of concrete filled steel tube arch bridge with the composite beam element[J]. Journal of the China Railway Society, 2003, 25 (5): 97-102. (in Chinese). doi: 10.3321/j.issn:1001-8360.2003.05.019
    [3] 陈宝春, 盛叶. 钢管混凝土哑铃形拱面内极限承载力研究[J]. 工程力学, 2009, 26 (9): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200909018.htm

    CHEN Bao-chun, SHENG Ye. Research on load-carrying capacity of concrete filled steel tubular dumbbell shaped rib arch under in-plane loads[J]. Engineering Mechanics, 2009, 26 (9): 94-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200909018.htm
    [4] 曾国锋. 钢管混凝土系杆拱桥极限承载力研究[D]. 上海: 同济大学, 2003.

    ZENG Guo-feng. Study of ultimate load bearing capacity for concrete-filled steel tube tied arch bridge[D]. Shanghai: Tongji University, 2003. (in Chinese).
    [5] 巩美杰. 哑铃型钢管混凝土拱助面内极限承载力分析[D]. 成都: 西南交通大学, 2011.

    GONG Mei-jie. The in-plane ultimate bearing capacity analysis for arch rib of dumbbell shaped concrete filled steel tubular[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese).
    [6] 李艳, 赵均海, 张常光, 等. 哑铃型钢管混凝土拱肋极限承载力研究[J]. 计算力学学报, 2015, 32 (1): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201501017.htm

    LI Yan, ZHAO Jun-hai, ZHANG Chang-guang, et al. Study of ultimate bearing capacity of dumbbell shaped concrete filled tubular arch rib[J]. Chinese Journal of Computational Mechanics, 2015, 32 (1): 99-106. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201501017.htm
    [7] 周水兴, 刘琪, 陈湛荣. 钢管初应力对哑铃型钢管砼拱桥承载力影响分析[J]. 工程力学, 2008, 25 (7): 159-165, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200807032.htm

    ZHOU Shui-xing, LIU Qi, CHEN Zhan-rong. Effect of initial stress on bearing capacity of dumbbell concrete-filled steel tube arch bridge[J]. Engineering Mechanics, 2008, 25 (7): 159-165, 178. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200807032.htm
    [8] 严圣友, 郑江敏, 项贻强, 等. 哑铃型钢管混凝土拱桥的计算方法研究[J]. 公路交通科技, 2004, 21 (6): 54-57. doi: 10.3969/j.issn.1002-0268.2004.06.015

    YAN Sheng-you, ZHENG Jiang-min, XIANG Yi-qiang, et al. Study on calculating methods of dumbbell-shaped CFST arch bridge[J]. Journal of Highway and Transportation Research and Development, 2004, 21 (6): 54-57. (in Chinese). doi: 10.3969/j.issn.1002-0268.2004.06.015
    [9] 张建民. 大跨度钢管混凝土拱桥承载能力与施工控制研究[D]. 广州: 华南理工大学, 2001.

    ZHANG Jian-min. Bearing capacity and construction control research of long-span concrete filled steel tubular arch bridges[D]. Guangzhou: South China University of Technology, 2001. (in Chinese).
    [10] MACKENZIE D, BOYLE J T, HAMILTON R. The elastic compensation method for limit and shakedown analysis: a review[J]. Journal of Strain Analysis for Engineering Design, 2000, 35 (3): 171-188. doi: 10.1243/0309324001514332
    [11] SESHADRI R, HOSSAIN M M. Simplified limit load determination using the mα-tangent method[J]. Journal of Pressure Vessel Technology, 2009, 131 (2): 287-294.
    [12] CHEN Li-jie, LIU Ying-hua, YANG Pu, et al. Limit analysis of structures containing flaws based on a modified elastic compensation method[J]. European Journal of Mechanics, 2008, 27 (2): 195-209. doi: 10.1016/j.euromechsol.2007.05.010
    [13] 张伟, 杨绿峰, 韩晓凤. 基于弹性补偿有限元法的无梁岔管安全评价[J]. 水利学报, 2009, 40 (10): 1175-1183. doi: 10.3321/j.issn:0559-9350.2009.10.004

    ZHANG Wei, YANG Lu-feng, HAN Xiao-feng. Safety evaluation of shell type bifurcated pipes using elastic compensation finite element method[J]. Journal of Hydraulic Engineering, 2009, 40 (10): 1175-1183. (in Chinese). doi: 10.3321/j.issn:0559-9350.2009.10.004
    [14] YANG Lu-feng, YU Bo, QIAO Yong-ping. Elastic modulus reduction method for limit load evaluation of frame structures[J]. Acta Mechanica Solida Sinica, 2009, 22 (2): 109-115. doi: 10.1016/S0894-9166(09)60095-1
    [15] YANG Lu-feng, YU Bo, JU J W. Incorporated strength capacity technique for limit load evaluation of trusses and framed structures under constant loading[J]. Journal of Structural Engineering, 2015, 141 (11): 1-11.
    [16] YANG Lu-feng, LI Qi, ZHANG Wei, et al. Homogeneous generalized yield criterion based elastic modulus reduction method for limit analysis of thin-walled structures with angle steel[J]. Thin-Walled Structures, 2014, 80: 153-158. doi: 10.1016/j.tws.2014.02.030
    [17] SHI J, BOYLE J T, MACKENZIE D, et al. Approximate limit design of frames using elastic analysis[J]. Computers and Structures, 1996, 61 (3): 495-501. doi: 10.1016/0045-7949(96)00095-8
    [18] HAMILTON R, BOYLE J T. Simplified lower bound limit analysis of transversely loaded thin plates using generalised yield criteria[J]. Thin-Walled Structures, 2002, 40 (6): 503-522. doi: 10.1016/S0263-8231(02)00007-1
    [19] MARTIN-ARTIEDA C C, DARGUSH G F. Approximate limit load evaluation of structural frames using linear elastic analysis[J]. Engineering Structures, 2007, 29 (3): 296-304. doi: 10.1016/j.engstruct.2006.03.013
    [20] 涂凌. 钢管砼拱桥承载力计算[J]. 重庆交通学院学报, 1999, 18 (2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT902.001.htm

    TU Ling. The bearing capacity calculation of the CFST arch bridges[J]. Journal of Chongqing Jiaotong Institute, 1999, 18 (2): 8-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT902.001.htm
    [21] 韦建刚, 陈宝春. 钢管混凝土拱桥拱肋刚度设计取值分析[J]. 交通运输工程学报, 2008, 8 (2): 34-39. http://transport.chd.edu.cn/article/id/200802008

    WEI Jian-gang, CHEN Bao-chun. Analysis on rib rigidity of concrete filled tubular arch bridge[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (2): 34-39. (in Chinese). http://transport.chd.edu.cn/article/id/200802008
    [22] 陈宝春, 肖泽荣, 韦建刚. 钢管混凝土哑铃形偏压构件试验研究[J]. 工程力学, 2005, 22 (2): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX20050200G.htm

    CHEN Bao-chun, XIAO Ze-rong, WEI Jian-gang. Experimental study of concrete-filled steel tubular dumbbell shaped columns under eccentric loads[J]. Engineering Mechanics, 2005, 22 (2): 89-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX20050200G.htm
    [23] 陈宝春, 黄福云, 盛叶. 钢管混凝土哑铃形短柱轴压试验研究[J]. 工程力学, 2005, 22 (1): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200501032.htm

    CHEN Bao-chun, HUANG Fu-yun, SHENG Ye. Experimental study of concrete-filled steel tubular dumbbell shaped short columns under concentric loads[J]. Engineering Mechanics, 2005, 22 (1): 187-194. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200501032.htm
    [24] 盛叶. 哑铃形钢管混凝土受弯构件极限承载力算法[J]. 安徽工业大学学报: 自然科学版, 2010, 27 (2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-HDYX201002017.htm

    SHENG Ye. Calculation method on load-carrying capacity of dumbbell shaped concrete filled steel tubular flexural member[J]. Journal of Anhui University of Technology: Natural Science, 2010, 27 (2): 163-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDYX201002017.htm
    [25] 盛叶, 陈宝春, 韦建刚. 新型钢管混凝土哑铃形偏压短柱试验研究[J]. 福州大学学报: 自然科学版, 2007, 35 (2): 276-280. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ200702025.htm

    SHENG Ye, CHEN Bao-chun, WEI Jian-gang. Experimental research on concrete filled steel tubular stubs with new type dumbbell section under eccentrical loads[J]. Journal of Fuzhou University: Natural Science, 2007, 35 (2): 276-280. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ200702025.htm
    [26] 杨绿峰, 李琦, 张伟, 等. 圆管截面齐次广义屈服函数与结构极限承载力[J]. 计算力学学报, 2013, 30 (5): 693-698. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305017.htm

    YANG Lu-feng, LI Qi, ZHANG Wei, et al. Homogeneous generalized yield function of circular tube section for ultimate bearing capacity of thin-walled structures[J]. Chinese Journal of Computational Mechanics, 2013, 30 (5): 693-698. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305017.htm
    [27] 杨绿峰, 吴文龙, 余波. 一种不依赖失效路径的结构体系可靠度分析方法[J]. 中国科学: 物理学力学天文学, 2014, 44 (11): 1220-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201411010.htm

    YANG Lu-feng, WU Wen-long, YU Bo. A failure-path independent method for analysis of structural system reliability[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2014, 44 (11): 1220-1231. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201411010.htm
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  127
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-23
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回