留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震作用下锚杆支护边坡动力响应

郝建斌 郭进扬 张振北 李金和

郝建斌, 郭进扬, 张振北, 李金和. 地震作用下锚杆支护边坡动力响应[J]. 交通运输工程学报, 2017, 17(3): 46-55.
引用本文: 郝建斌, 郭进扬, 张振北, 李金和. 地震作用下锚杆支护边坡动力响应[J]. 交通运输工程学报, 2017, 17(3): 46-55.
HAO Jian-bin, GUO Jin-yang, ZHANG Zhen-bei, LI Jin-he. Dynamic response of anchors-supported slope under earthquake[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 46-55.
Citation: HAO Jian-bin, GUO Jin-yang, ZHANG Zhen-bei, LI Jin-he. Dynamic response of anchors-supported slope under earthquake[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 46-55.

地震作用下锚杆支护边坡动力响应

基金项目: 

国家自然科学基金项目 41102177

国家自然科学基金项目 41472266

国家自然科学基金项目 41440021

详细信息
    作者简介:

    郝建斌(1975-), 女, 山西武乡人, 长安大学副教授, 工学博士, 从事岩土工程研究

  • 中图分类号: U416.14

Dynamic response of anchors-supported slope under earthquake

More Information
    Author Bio:

    HAO Jian-bin(1975-), female, associate professor, PhD, +86-29-82339356, dcdgx28@chd.edu.cn

  • 摘要: 为研究填土边坡锚杆的动力响应特征与失效模式, 进行了锚杆格构支护土质边坡振动台模型试验, 采用正弦激励, 分别对边坡的加速度和锚杆的轴向应变进行了监测。分析结果表明: 在同一振动频率下, 锚杆轴向动应变幅值随加速度峰值的增大而增大; 加速度峰值较小时, 应变基本在固定正负值之间往复循环, 边坡处于稳定状态; 随着加速度峰值增大, 锚杆的最大与最小应变不再稳定, 但变化不是很大, 边坡仍处于稳定状态; 当加速度峰值达到破坏峰值时, 锚杆轴向应变不再具有规律性, 滑面处锚杆轴向应变突变最明显, 滑体与稳定体之间发生明显的相对位移。加速度峰值较小时, 中下层锚杆轴向应变较大, 中层锚杆应变约为顶层锚杆应变的2倍; 随着加速度峰值的增大, 顶层锚杆轴向应变逐渐变大, 主要由中上层锚杆承受荷载; 当加速度峰值达到破坏峰值时, 各层锚杆的动应变最大值急剧增大, 中层锚杆应变变化幅度最大, 振动过程中滑体与滑床之间出现明显分离, 锚杆被拔出。可见, 传统的边坡锚杆设计思想“强腰固脚”适合于地震设防烈度较小地区, 对于设防烈度较大地区, 锚杆设计时需适当增加上层锚杆和腰部锚杆的锚固长度。

     

  • 图  1  边坡模型

    Figure  1.  Slope model

    图  2  锚杆应变片布置

    Figure  2.  Locations of strain gauges on anchors

    图  3  边坡PGA放大系数与加速度的关系

    Figure  3.  Relationships between slope PGA amplification coefficient and acceleration

    图  4  工况11下锚杆6自由段中点轴向动应变时程曲线

    Figure  4.  Axial dynamic strain time-history curve of middle point on free section of anchor 6# under condition 11

    图  5  工况11下锚杆6锚固段中点轴向动应变时程曲线

    Figure  5.  Axial dynamic strain time-history curve of middle point on anchored section of anchor 6# under condition 11

    图  6  工况11下锚杆6滑面处轴向动应变时程曲线

    Figure  6.  Axial dynamic strain time-history curve of point at sliding face on anchor 6# under condition 11

    图  7  工况26下锚杆6自由段中点轴向动应变时程曲线

    Figure  7.  Axial dynamic strain time-history curve of middle point on free section of anchor 6# under condition 26

    图  8  工况26下锚杆6锚固段中点轴向动应变时程曲线

    Figure  8.  Axial dynamic strain time-history curve of middle point on anchored section of anchor 6# under condition 26

    图  9  工况26下锚杆6滑面处轴向动应变时程曲线

    Figure  9.  Axial dynamic strain time-history curve of point at sliding face on anchor 6# under condition 26

    图  10  振动频率为5Hz时锚杆6的轴向最大应变曲线

    Figure  10.  Maximal axial strain curves of anchor 6# under vibration frequency of 5Hz

    图  11  振动频率为10Hz时锚杆6的轴向最大应变曲线

    Figure  11.  Maximal axial strain curves of anchor 6# under vibration frequency of 10Hz

    图  12  振动频率为15Hz时锚杆6的轴向最大应变曲线

    Figure  12.  Maximal axial strain curves of anchor 6# under vibration frequency of 15Hz

    图  13  振动频率为20Hz时锚杆6的轴向最大应变曲线

    Figure  13.  Maximal axial strain curves of anchor 6# under vibration frequency of 20Hz

    图  14  加速度峰值为0.2g时锚杆的轴向应变最大值曲线

    Figure  14.  Maximal axial strain curves of anchors under peak acceleration of 0.2g

    图  15  加速度峰值为0.4g时锚杆的轴向应变最大值曲线

    Figure  15.  Maximal axial strain curves of anchors under peak acceleration of 0.4g

    图  16  加速度峰值为0.6g时锚杆的轴向应变最大值曲线

    Figure  16.  Maximal axial strain curves of anchors under peak acceleration of 0.6g

    图  17  加速度峰值为0.8g时锚杆的轴向应变最大值曲线

    Figure  17.  Maximal axial strain curves of anchors under peak acceleration of 0.8g

    图  18  加速度峰值为1.0g时锚杆的轴向应变最大值曲线

    Figure  18.  Maximal axial strain curves of anchors under peak acceleration of 1.0g

    图  19  坡体破坏阶段锚杆的轴向应变最大值曲线

    Figure  19.  Maximal axial strain curves of anchors at break stage of slope

    图  20  试验锚杆

    Figure  20.  Test anchors

    表  1  加载工况

    Table  1.   Loading conditions

    下载: 导出CSV

    表  2  破坏试验加载工况

    Table  2.   Loading condition of failure test

    下载: 导出CSV
  • [1] 郝建斌. 地震作用下边坡稳定性研究进展[J]. 世界地震工程, 2014, 30 (1): 145-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201401020.htm

    HAO Jian-bin. Progress of research on stability of slope subjected to seismic excitation[J]. World Earthquake Engineering, 2014, 30 (1): 145-153. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201401020.htm
    [2] 郭海强, 姚令侃, 郭沉稳, 等. 地震强度递增沙堆模型响应机制的研究[J]. 湖南大学学报: 自然科学版, 2015, 42 (5): 99-106. doi: 10.3969/j.issn.1674-2974.2015.05.015

    GUO Hai-qiang, YAO Ling-kan, GUO Chen-wen, et al. Study on the response mechanism of sandpile model tests with increased seismic loading[J]. Journal of Hunan University: Natural Sciences, 2015, 42 (5): 99-106. (in Chinese). doi: 10.3969/j.issn.1674-2974.2015.05.015
    [3] 段书苏, 姚令侃, 郭沉稳. 基于侵蚀循环理论的地震触发崩塌滑坡灾势评价[J]. 湖南大学学报: 自然科学版, 2015, 42 (9): 116-123. doi: 10.3969/j.issn.1674-2974.2015.09.016

    DUAN Shu-su, YAO Ling-kan, GUO Chen-wen. Tendency evaluation of collapse-landslide caused by earthquake based on the erosion cycle theory[J]. Journal of Hunan University: Natural Sciences, 2015, 42 (9): 116-123. (in Chinese). doi: 10.3969/j.issn.1674-2974.2015.09.016
    [4] 黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 2009, 28 (6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021

    HUANG Run-qiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (6): 1239-1249. (in Chinese). doi: 10.3321/j.issn:1000-6915.2009.06.021
    [5] TAKEMURA J, KUBO H, YAMAZAKI J. Field surveys of anchored slopes after 2004Niigataken Chuetsu earthquake[C]∥Thomas Telford. International Conference on Ground Anchorages and Anchored Structures in Service 2007. London: Thomas Telford, 2007: 407-416.
    [6] 叶海林, 郑颖人, 黄润秋, 等. 锚杆支护岩质边坡地震动力响应分析[J]. 后勤工程学院学报, 2010, 26 (4): 1-7. doi: 10.3969/j.issn.1672-7843.2010.04.001

    YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, et al. Analysis on dynamic response of rockbolt in rock slope under earthquake[J]. Journal of Logistical Engineering University, 2010, 26 (4): 1-7. (in Chinese). doi: 10.3969/j.issn.1672-7843.2010.04.001
    [7] 朱宏伟, 姚令侃, 项琴. 锚固长度对加锚边坡地震动力特性的影响[J]. 水文地质工程地质, 2012, 39 (3): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201203013.htm

    ZHU Hong-wei, YAO Ling-kan, XIANG Qin. A study of the effect of bolt length on dynamic response of anchored slopes under earthquakes[J]. Hydrogeology and Engineering Geology, 2012, 39 (3): 54-59. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201203013.htm
    [8] LI Zhi, XU Qian, LU Gang. Seismic response of anchored slopes to the effect of seismic loads[J]. Electronic Journal of Geotechnical Engineering, 2014, 19: 3733-3744.
    [9] STAMATOPOULOS C A, BASSANOU M, BRENNAN A J, et al. Mitigation of the seismic motion near the edge of clifftype topographies[J]. Soil Dynamics and Earthquake Engineering, 2007, 27 (12): 1082-1100. doi: 10.1016/j.soildyn.2007.01.012
    [10] TRANDAFIR A C, KAMAI T, SIDLE R C. Earthquakeinduced displacements of gravity retaining walls and anchorreinforced slopes[J]. Soil Dynamics and Earthquake Engineering, 2009, 29 (3): 428-437. doi: 10.1016/j.soildyn.2008.04.005
    [11] TANNANT D D, BRUMMER R K, YI X. Rockbolt behaviour under dynamic loading: field tests and modeling[J]. International Journal of Rock Mechanics and Mining Sciences. 1995, 32 (6): 537-550.
    [12] HONG Y S, CHEN R H, WU C S, et al. Shaking table tests and stability analysis of steep nailed slope[J]. Canadian Geotechnical Journal, 2005, 42 (5): 1264-1279. doi: 10.1139/t05-055
    [13] SHUKLA S K, HOSSAIN M M. Stability analysis of multidirectional anchored rock slope subjected to surcharge and seismic loads[J]. Soil Dynamics and Earthquake Engineering, 2011, 31 (5/6): 841-844.
    [14] 董建华, 朱彦鹏. 框架锚杆支护边坡地震响应分析[J]. 兰州理工大学学报, 2008, 34 (2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY200802029.htm

    DONG Jian-hua, ZHU Yan-peng. Analysis of response of slope supported with framed anchor to earthquake[J]. Journal of Lanzhou University of Technology, 2008, 34 (2): 118-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY200802029.htm
    [15] 叶海林, 黄润秋, 郑颖人, 等. 岩质边坡锚杆支护参数地震敏感性分析[J]. 岩土工程学报, 2010, 32 (9): 1374-1379. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009013.htm

    YE Hai-lin, HUANG Run-qiu, ZHENG Ying-ren, et al. Sensitivity analysis of parameters for bolts in rock slopes under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (9): 1374-1379. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009013.htm
    [16] 彭宁波, 言志信, 刘子振, 等. 地震作用下锚固边坡稳定性数值分析[J]. 工程地质学报, 2012, 20 (1): 44-50. doi: 10.3969/j.issn.1004-9665.2012.01.007

    PENG Ning-bo, YAN Zhi-xin, LIU Zi-zhen, et al. Numerical analysis on stability of slopes supported with bolts under earthquake[J]. Journal of Engineering Geology, 2012, 20 (1): 44-50. (in Chinese). doi: 10.3969/j.issn.1004-9665.2012.01.007
    [17] 龙海涛. 层状软岩边坡地震动力响应特征及抗震加固措施研究——以广甘高速公路边坡为例[D]. 成都: 成都理工大学, 2012.

    LONG Hai-tao. Study on the seismic characteristics and antiseismic strengthening measures of stratiform soft rock slope—take the slope of the Guanggan Highway as an example[D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese).
    [18] 范刚, 张建经, 付晓, 等. 双排桩加预应力锚索加固边坡锚索轴力地震响应特性研究[J]. 岩土工程学报, 2016, 38 (6): 1095-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606017.htm

    FAN Gang, ZHANG Jian-jing, FU Xiao, et al. Axial force of anchor cables in slope reinforced by double-row anti-slide piles and pre-stressed anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (6): 1095-1103. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606017.htm
    [19] 叶海林, 郑颖人, 陆新, 等. 边坡锚杆地震动特性的振动台试验研究[J]. 土木工程学报, 2011, 44 (增): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2011S1025.htm

    YE Hai-lin, ZHENG Ying-ren, LU Xin, et al. Shaking table test on anchor bars of slope under earthquake[J]. China Civil Engineering Journal, 2011, 44 (S): 152-157. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2011S1025.htm
    [20] 文畅平, 杨果林. 格构式框架护坡地震动位移模式的振动台试验研究[J]. 岩石力学与工程学报, 2011, 30 (10): 2076-2083. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110016.htm

    WEN Chang-ping, YANG Guo-lin. Shaking table model test study of seismic displacement mode of slope with anchor lattice frame structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (10): 2076-2083. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110016.htm
    [21] 杨果林, 文畅平. 格构锚固边坡地震响应的振动台试验研究[J]. 中南大学学报: 自然科学版, 2012, 43 (4): 1482-1493. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201204046.htm

    YANG Guo-lin, WEN Chang-ping. Shaking table test study on dynamic response of slope with lattice framed anchor structure during earthquake[J]. Journal of Central South University: Science and Technology, 2012, 43 (4): 1482-1493. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201204046.htm
    [22] 郝建斌, 姚婕, 黄毓挺, 等. 动力作用下锚杆格构支护土质边坡动态响应分析[J]. 地球科学与环境学报, 2015, 37 (5): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201505009.htm

    HAO Jian-bin, YAO Jie, HUANG Yu-ting, et al. Analysis of dynamic response of soil slope reinforced by anchors and lattices subjected to dynamic loads[J]. Journal of Earth Sciences and Environment, 2015, 37 (5): 93-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201505009.htm
    [23] LIU Yun, GAO Feng, LI Ya. Dynamic stability analysis on a slope supported by anchor bolts and piles[J]. Electronic Journal of Geotechnical Engineering, 2015, 20 (7): 1887-1900.
    [24] 董建华, 张媛, 朱彦鹏, 等. 框架预应力锚杆边坡锚固结构的随机地震反应及动力可靠度分析[J]. 中国公路学报, 2015, 28 (10): 26-33. doi: 10.3969/j.issn.1001-7372.2015.10.004

    DONG Jian-hua, ZHANG Yuan, ZHU Yan-peng, et al. Random seismic response and dynamic reliability analysis of frame with prestressed anchors for stability[J]. China Journal of Highway and Transport, 2015, 28 (10): 26-33. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.10.004
    [25] LIN Yu-liang, YANG Guo-lin, YANG Xiao, et al. Response of gravity retaining wall with anchoring frame beam supporting a steep rock slope subjected to earthquake loading[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 633-649. doi: 10.1016/j.soildyn.2016.11.002
    [26] 杨明, 姚令侃, 王建, 等. 斜坡堆积体抗震加固措施离心模型试验[J]. 西南交通大学学报, 2008, 43 (3): 335-340. doi: 10.3969/j.issn.0258-2724.2008.03.008

    YANG Ming, YAO Ling-kan, WANG Jian, et al. Centrifuge model test of earthquake countermeasures for deposit on slope[J]. Journal of Southwest Jiaotong University, 2008, 43 (3): 335-340. (in Chinese). doi: 10.3969/j.issn.0258-2724.2008.03.008
    [27] 朱彦鹏, 叶帅华. 水平地震下框架锚杆支护边坡简化分析方法[J]. 工程力学, 2011, 28 (12): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201112005.htm

    ZHU Yan-peng, YE Shuai-hua. Simplified analysis of slope supported with frame-anchors under lateral seismic loading[J]. Engineering Mechanics, 2011, 28 (12): 27-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201112005.htm
    [28] 叶帅华, 朱彦鹏. 框架预应力锚杆支护边坡地震动稳定性分析方法[J]. 煤炭学报, 2012, 37 (12): 1994-1998. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201212007.htm

    YE Shuai-hua, ZHU Yan-peng. Stability analysis of slope supported by frame with pre-stressed anchors under earthquake[J]. Journal of China Coal Society, 2012, 37 (12): 1994-1998. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201212007.htm
    [29] 董建华, 朱彦鹏, 马巍, 等. 框架预应力锚杆边坡支护结构抗震简化设计方法[J]. 中国公路学报, 2012, 25 (5): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201205011.htm

    DONG Jian-hua, ZHU Yan-peng, MA Wei, et al. Simplified seismic design method of frame supporting structure with prestressed anchors for slope stability[J]. China Journal of Highway and Transport, 2012, 25 (5): 38-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201205011.htm
    [30] LIU Han-xiang, XU Qiang, LI Yan-rong. Effect of lithology and structure on seismic response of steep slope in a shaking table test[J]. Journal of Mountain Science, 2014, 11 (2): 371-383.
    [31] 张江伟, 高晓莉, 李小军, 等. 土质边坡地震动力响应规律研究[J]. 震灾防御技术, 2016, 11 (4): 771-780. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201604007.htm

    ZHANG Jiang-wei, GAO Xiao-li, LI Xiao-jun. Dynamic response analysis of soil slope under seismic wave[J]. Technology for Earthquake Disaster Prevention, 2006, 11 (4): 771-780. (in Chinese. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201604007.htm
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  758
  • HTML全文浏览量:  149
  • PDF下载量:  614
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-05
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回