留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面织构对曲轴轴承润滑性能的影响

刘成 吕延军 李莎 刘万万 杨茹

刘成, 吕延军, 李莎, 刘万万, 杨茹. 表面织构对曲轴轴承润滑性能的影响[J]. 交通运输工程学报, 2017, 17(3): 65-74.
引用本文: 刘成, 吕延军, 李莎, 刘万万, 杨茹. 表面织构对曲轴轴承润滑性能的影响[J]. 交通运输工程学报, 2017, 17(3): 65-74.
LIU Cheng, LU: Yan-jun, LI Sha, LIU Wan-wan, YANG Ru. Effect of surface texture on tribological performance of crankshaft bearing[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 65-74.
Citation: LIU Cheng, LU: Yan-jun, LI Sha, LIU Wan-wan, YANG Ru. Effect of surface texture on tribological performance of crankshaft bearing[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 65-74.

表面织构对曲轴轴承润滑性能的影响

基金项目: 

学基金项目 2014JM2-5082

陕西省教育厅科学研究计划项目 15JS068

详细信息
    作者简介:

    刘成(1988-), 男, 湖北石首人, 西安理工大学工学博士研究生, 从事先进摩擦学理论研究

    吕延军(1972-), 男, 陕西韩城人, 西安理工大学教授, 工学博士

  • 中图分类号: U664.21

Effect of surface texture on tribological performance of crankshaft bearing

More Information
  • 摘要: 考虑凹槽与凹坑织构之间的协同润滑效应, 在曲轴轴承表面设计了抛物线凹槽-球形凹坑复合织构, 以改善轴承的润滑性能; 为了分析抛物线凹槽-球形凹坑复合织构对曲轴轴承润滑性能的影响, 基于平均Reynolds方程和Greenwood-Tripp微凸体接触方程构建了曲轴轴承的混合润滑模型, 并采用质量守恒的边界条件处理油膜的破裂和再形成行为, 分析了凹槽织构、凹坑织构与凹槽-凹坑复合织构的摩擦学性能, 研究了凹槽-凹坑复合织构的分布位置和结构参数对轴承承载力和摩擦力的影响。分析结果表明: 凹槽-凹坑复合织构具有高于凹槽织构的承载力和低于凹坑织构的摩擦力; 存在最优的凹槽宽度为1.3mm, 凹槽面积率为0.7, 凹槽最大深度为25μm, 凹坑数量为6, 凹坑面积率为0.7, 凹坑最大深度为20μm, 使得轴承量纲为1的承载力最大; 存在最优的凹槽宽度为2.6mm, 凹槽面积率为0.7, 凹槽最大深度为30μm, 凹坑数量为15, 凹坑面积率为0.7, 凹坑最大深度为35μm, 使得轴承量纲为1的摩擦力最小; 当凹槽-凹坑复合织构的分布位置、结构参数取最优值时, 相对于无织构轴承而言, 轴承的承载力提高了4.1%, 摩擦力减小了19.6%。

     

  • 图  1  轴承

    Figure  1.  Bearing

    图  2  抛物线凹槽-球形凹坑复合织构

    Figure  2.  Parabolic groove-spherical dimple compound texture

    图  3  抛物线凹槽

    Figure  3.  Parabolic groove

    图  4  球形凹坑

    Figure  4.  Spherical dimple

    图  5  量纲为1的承载力和偏心率的关系曲线

    Figure  5.  Relationship curves of dimensionless load-carrying capacity and eccentricity ratio

    图  6  量纲为1的摩擦力和偏心率的关系曲线

    Figure  6.  Relationship curves of dimensionless friction force and eccentricity ratio

    图  7  量纲为1的承载力和织构区域起始角度的关系曲线

    Figure  7.  Relationship curves of dimensionless load-carrying capacity and start angle of textured zone

    图  8  量纲为1的承载力和角度比的关系曲线

    Figure  8.  Relationship curve of dimensionless load-carrying capacity and angle ratio

    图  9  量纲为1的承载力和凹槽面积率的关系曲线

    Figure  9.  Relationship curves of dimensionless load-carrying capacity and groove area density

    图  10  量纲为1的承载力和凹槽最大深度的关系曲线

    Figure  10.  Relationship curves of dimensionless load-carrying capacity and groove maximum depth

    图  11  量纲为1的承载力和凹坑面积率的关系曲线

    Figure  11.  Relationship curves of dimensionless load-carrying capacity and dimple area density

    图  12  量纲为1的承载力和凹坑最大深度的关系曲线

    Figure  12.  Relationship curves of dimensionless load-carrying capacity and dimple maximum depth

    图  13  无织构时轴承的压力分布

    Figure  13.  Pressure distribution of untextured bearing

    图  14  量纲为1的承载力最大时复合织构轴承的压力分布

    Figure  14.  Pressure distribution of bearing with compound texture when dimensionless load-carrying capacity is largest

    图  15  量纲为1的摩擦力和织构区域起始角度的关系曲线

    Figure  15.  Relationship curves of dimensionless friction force and start angle of textured zone

    图  16  量纲为1的摩擦力和角度比的关系曲线

    Figure  16.  Relationship curve of dimensionless friction force and angle ratio

    图  17  量纲为1的摩擦力和凹槽面积率的关系曲线

    Figure  17.  Relationship curves of dimensionless friction force and groove area density

    图  18  量纲为1的摩擦力和凹槽最大深度的关系曲线

    Figure  18.  Relationship curves of dimensionless friction force and groove maximum depth

    图  19  量纲为1的摩擦力和凹坑面积率的关系曲线

    Figure  19.  Relationship curves of dimensionless friction force and dimple area density

    图  20  量纲为1的摩擦力和凹坑最大深度的关系曲线

    Figure  20.  Relationship curves of dimensionless friction force and dimple maximum depth

    图  21  量纲为1的摩擦力最小时有无织构的轴承压力分布

    Figure  21.  Pressure distributions of textured and untextured bearings when dimensionless friction force is smallest

    表  1  有量纲承载力和摩擦力

    Table  1.   Dimensional load-carrying capacities and friction forces

    下载: 导出CSV
  • [1] SUMMER F, GRUN F, SCHIFFER J, et al. Tribological study of crankshaft bearing systems: comparison of forged steel and cast iron counterparts under start-stop operation[J]. Wear, 2015, 338-339: 232-241. doi: 10.1016/j.wear.2015.06.022
    [2] BOBZIN K, BROGELMANN T. Minimizing frictional losses in crankshaft bearings of automobile powertrain by diamond-like carbon coatings under elasto-hydrodynamic lubrication[J]. Surface and Coatings Technology, 2016, 290: 100-109. doi: 10.1016/j.surfcoat.2015.08.064
    [3] 赵小勇, 孙军, 刘利平, 等. 不同工况下内燃机曲轴轴承的润滑性能[J]. 内燃机学报, 2011, 29 (4): 348-354. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201104012.htm

    ZHAO Xiao-yong, SUN Jun, LIU Li-ping, et al. Lubrication performance of crankshaft bearing for internal combustion engine at different working condition[J]. Transactions of CSICE, 2011, 29 (4): 348-354. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201104012.htm
    [4] 宋现浩, 段京华, 孙军, 等. 内燃机曲轴轴承润滑影响因素的研究进展[J]. 机械设计, 2015, 32 (5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201505002.htm

    SONG Xian-hao, DUAN Jing-hua, SUN Jun, et al. Review on lubrication factors of crankshaft bearings in internal combustion engine[J]. Journal of Mechanical Design, 2015, 32 (5): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201505002.htm
    [5] YU Ru-fei, LI Pei, CHEN Wei. Study of grease lubricated journal bearing with partial surface texture[J]. Industrial Lubrication and Tribology, 2016, 68 (2): 149-157. doi: 10.1108/ILT-03-2015-0028
    [6] 张玉周. 表面织构化改善摩擦学性能研究综述[J]. 成都大学学报: 自然科学版, 2013, 32 (1): 64-67, 70. doi: 10.3969/j.issn.1004-5422.2013.01.018

    ZHANG Yu-zhou. Review of research on surface texturing for improving tribological performance[J]. Journal of Chengdu University: Nature Science Edition, 2013, 32 (1): 64-67, 70. (in Chinese). doi: 10.3969/j.issn.1004-5422.2013.01.018
    [7] TANG Wei, ZHOU Yuan-kai, ZHU Hua, et al. The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact[J]. Applied Surface Science, 2013, 273: 199-204. doi: 10.1016/j.apsusc.2013.02.013
    [8] SEP J, PAWLUS P, GALDA L. The effect of helical groove geometry on journal abrasive wear[J]. Archives of Civil and Mechanical Engineering, 2013, 13 (2): 150-157. doi: 10.1016/j.acme.2013.01.001
    [9] 汪久根, 陈仕洪, 王庆九. 仿生菱形表面织构对高速列车摩擦噪声的影响[J]. 交通运输工程学报, 2014, 14 (1): 43-48. doi: 10.3969/j.issn.1671-1637.2014.01.008

    WANG Jiu-gen, CHEN Shi-hong, WANG Qing-jiu. Effect of bionic rhombic surface texture on frictional noise of highspeed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (1): 43-48. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.01.008
    [10] KANGO S, SHARMA R K, PANDEY R K. Comparative analysis of textured and grooved hydrodynamic journal bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228 (1): 82-95. doi: 10.1177/1350650113499742
    [11] MENG F M, ZHANG L, LIU Y, et al. Effect of compound dimple on tribological performances of journal bearing[J]. Tribology International, 2015, 91: 99-110. doi: 10.1016/j.triboint.2015.06.030
    [12] LIU Jun, MOCHIMARU Y. The effects of trapezoidal groove on a self-acting fluid-lubricated herringbone grooves journal bearing[J]. ISRN Tribology, 2013, 2013: 1-7.
    [13] LIU Fu-xi, LU Yan-jun, ZHANG Qi-meng, et al. Load performance analysis of three-pad fixing pad aerodynamic journal bearings with parabolic grooves[J]. Lubrication Science, 2016, 28 (4): 207-220. doi: 10.1002/ls.1326
    [14] ADATEPE H, BIYIKLIOGLU A, SOFUOGLU H. An investigation of tribological behaviors of dynamically loaded nongrooved and micro-grooved journal bearings[J]. Tribology International, 2013, 58: 12-19. doi: 10.1016/j.triboint.2012.09.009
    [15] ASHIHARA K, HASHIMOTO H. Theoretical modeling for microgrooved journal bearings under mixed lubrication[J]. Journal of Tribology, 2010, 132 (4): 1-16.
    [16] DADOUCHE A, CONLON M J. Operational performance of textured journal bearings lubricated with a contaminated fluid[J]. Tribology International, 2016, 93: 377-389. doi: 10.1016/j.triboint.2015.09.022
    [17] TALA-IGHIL N, MASPEYROT P, FILLON M, et al. Effects of surface texture on journal-bearing characteristics under steady-state operating conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221 (6): 623-633. doi: 10.1243/13506501JET287
    [18] LU Yu-shan, LIU Yue-ming, WANG Jun, et al. Experimental investigation into friction performance of dimples journal bearing with phyllotactic pattern[J]. Tribology Letters, 2014, 55 (2): 271-278. doi: 10.1007/s11249-014-0355-7
    [19] TALA-IGHIL N, FILLON M. A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics[J]. Tribology International, 2015, 90: 228-239. doi: 10.1016/j.triboint.2015.02.032
    [20] KHATRI C B, SHARMA S C. Influence of textured surface on the performance of non-recessed hybrid journal bearing operating with non-Newtonian lubricant[J]. Tribology International, 2016, 95: 221-235.
    [21] KANGO S, SHARMA R K, PANDEY R K. Thermal analysis of microtextured journal bearing using non-Newtonian rheology of lubricant and JFO boundary conditions[J]. Tribology international, 2014, 69: 19-29. doi: 10.1016/j.triboint.2013.08.009
    [22] PATIR N, CHENG S H. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Tribology, 1978, 100 (1): 12-17.
    [23] WANG Y S, WANG Q J, LIN C. Mixed lubrication of coupled journal-thrust-bearing systems including mass conserving cavitation[J]. Journal of Tribology, 2003, 125 (4): 747-755.
    [24] HAJJAM M, BONNEAU D. A transient finite element cavitation algorithm with application to radial lip seals[J]. Tribology International, 2007, 40 (8): 1258-1269.
    [25] MENG Xiang-hui, GU Chun-xing, XIE You-bai. Elasto-plastic contact of rough surfaces: a mixed-lubrication model for the textured surface analysis[J]. Meccanica, 2017, 52 (7): 1541-1559.
    [26] MORRIS N, RAHMANI R, RAHNEJAT H, et al. Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication[J]. Tribology International, 2013, 59: 248-258.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  158
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-25
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回