Mechanics characteristics of surface damage on sliding-rolling friction pair under high-speed and heavy-load condition
-
摘要: 采用有限元法建立了M50钢滑滚摩擦副的弹塑性接触模型, 在接触应力约为4.0GPa、线速度约为50m·s-1的高速重载工况下, 分析了其等效应力、剪切应力场与表层塑性变形, 研究了摩擦因数与相对滑动速度对M50钢滑滚摩擦副接触行为的影响, 并对比了M50钢双滚子滑滚试验中的表层塑性变形。计算结果表明: M50钢摩擦副的最大接触应力和椭圆接触区长、短轴长度的有限元分析结果与Hertz理论计算结果的偏差分别为2.66%、0.26%、6.43%;当摩擦因数由0.1增加到0.5时, 最大等效应力的位置由摩擦副次表层约0.5mm处逐渐向接触表面发展; 摩擦副表面发生胶合失效时的摩擦因数大于0.3, 接触表面最大等效应力大于1 700 MPa; 胶合失效发生时, M50钢摩擦副的应力和塑性应变具有特定的方向性, 表现在滑滚比分别为0.12、0.15条件下, 接触点处线速度较高的表面最大等效应力分别达到2 847、2 689 MPa, 产生较大的塑性应变, 最大值分别达到0.062、0.061, 而线速度较低的表面最大等效应力分别为2 269、2 101 MPa, 产生的最大塑性变形相对较小, 分别为0.040、0.039。Abstract: An elasto-plastic contact model of M50 steel sliding-rolling friction pair was built by using the finite element method. Under the high-speed and heavy-load condition that the contact stress was about 4.0GPa and the velocity was about 50 m·s-1, the Von Mises stress, shear stress and plastic deformation of surface layer were analyzed, the effects of the friction coefficient and the relative sliding velocity on the contact behaviors of the M50 steel sliding-rolling friction pair were studied, and the plastic deformations of surface layers were compared in M50 steel double-roller sliding-rolling test result. Calculation result shows that the differences of maximum contact stresses and major and minor axis lengths of elliptical contact region between the finite element analysis result and the Hertz theory calculation result are 2.66%, 0.26% and 6.43%, respectively. When the friction coefficient increases from 0.1 to 0.5, the location of maximum Von Mises stress gradually moves from the friction pair subsurface at about 0.5 mm to thecontact surface. When the scuffing failure of friction pair surface occurs, the friction coefficient is more than 0.3, and the maximum Von Mises stress is over 1 700 MPa. When the scuffing failure occurs, the stress and plastic strain of M50 steel friction pair have specific direction. Under the condition that sliding-rolling ratios are 0.12 and 0.15, respectively, the maximum Von Mises stresses are 2 847 MPa and 2 689 MPa on the contact point with higher linear velocity, which leads to relatively large plastic strain, and the maximum values are 0.062 and 0.061, respectively. However, on the surface with lower linear velocity at the two sliding-rolling ratios, the maximum Von Mises stresses are 2 269 MPa and 2 101 MPa, respectively, the plastic strains are smaller, and the maximum values are 0.040 and 0.039, respectively.
-
表 1 摩擦副分析工况
Table 1. Analysis conditions of friction pair
表 2 室温下M50钢的材料属性
Table 2. Material properties of M50steel at room temperature
表 3 计算结果对比
Table 3. Comparison of calculation results
-
[1] EBERT F J. An overview of performance characteristics, experiences and trends of aerospace engine bearings technologies[J]. Chinese Journal of Aeronautics, 2007, 20 (4): 378-384. doi: 10.1016/S1000-9361(07)60058-2 [2] 徐流杰, 魏世钟, 张永振, 等. 轧辊用高钒高速钢的滚-滑动磨损性能及失效行为研究[J]. 摩擦学学报, 2009, 29 (1): 55-60. doi: 10.3321/j.issn:1004-0595.2009.01.010XU Liu-jie, WEI Shi-zhong, ZHANG Yong-zhen, et al. Rolling/sliding wear property and failure behavior of highvanadium high-speed steel for rolls[J]. Tribology, 2009, 29 (1): 55-60. (in Chinese). doi: 10.3321/j.issn:1004-0595.2009.01.010 [3] SILAEV B M, FEDOROV D G, DANILENKO P A. Dynamic of damage of aircraft engine high-speed rollingelement bearings tested in low-viscosity model mediums[J]. Procedia Engineering, 2017, 176: 43-49. doi: 10.1016/j.proeng.2017.02.271 [4] SILAEV B M, DANILENKO P A. Architecture of a multifactor conceptual model of high-speed rolling-contact bearing for aircraft engines and research guidelines[J]. Russian Aeronautics, 2014, 57 (4): 416-420. doi: 10.3103/S1068799814040175 [5] WANG L, WOOD R J K. The influence of contact conditions on surface reaction layers formed between steel surfaces lubricated by an aviation oil[J]. Tribology International, 2007, 40 (10-12): 1655-1666. doi: 10.1016/j.triboint.2007.02.014 [6] INGRAM M, HAMER C, SPIKES H. A new scuffing test using contra-rotation[J]. Wear, 2015, 328-329: 229-240. doi: 10.1016/j.wear.2015.01.080 [7] FAN Jing-yun, SPIKES H. New test for mild lubricated wear in rolling-sliding contacts[J]. Tribology Transactions, 2007, 50 (2): 145-153. doi: 10.1080/10402000701255476 [8] WOJCIECHOWSKI L, EYMARD S, IGNASZAK Z, et al. Fundamentals of ductile cast iron scuffing at the boundary lubrication regime[J]. Tribology International, 2015, 90: 445-454. doi: 10.1016/j.triboint.2015.05.011 [9] ZENG Dong-fang, LU Liao-tao, ZHANG Ning, et al. Influence of a hybrid treatment consisting of fine particle bombardment and powder impact plating on the scuffing behavior of ductile cast iron[J]. Wear, 2017, 372-373: 1-11. doi: 10.1016/j.wear.2016.11.019 [10] SAVOLAINEN M, LEHTOVAARA A. An experimental approach for investigating scuffing initiation due to overload cycles with a twin-disc test device[J]. Tribology International, 2017, 109: 311-318. doi: 10.1016/j.triboint.2017.01.005 [11] QUILLIEN M, GRAS R, COLLONGEAT L, et al. A testing device for rolling-sliding behavior in harsh environments: the twin-diskcryotribometer[J]. Tribology International, 2001, 34 (4): 287-292. doi: 10.1016/S0301-679X(01)00012-3 [12] SNIDLE R W, DHULIPALLA A K, EVANS H P. Scuffing performance of a hard coating under EHL conditions at sliding speeds up to 16m/s and contact pressures up to 2.0GPa[C]∥ASME. 10th International Power Transmission and Gearing Conference. New York: ASME, 2007: 697-715. [13] MBAREK M, RHAIEM S, KHARRAT M, et al. Experimental study of the rolling-sliding contact conditions in a PA66/steel gear using twin-disc test rig: friction and wear analysis[J]. Surface Review and Letters, 2015, 22 (6): 1-11. [14] ROSADO L, FORSRER N H, Thompson K L, et al. Rolling contact fatigue life and spall propagation of AISI M50, M50NiL, and AISI 52100, Part I: experimental results[J]. Tribology Transactions, 2010, 53 (1): 29-41. [15] FORSTER N E, ROSADO L, OGDEN W P, et al. Rollingcontact fatigue life and spall propagation of AISI M50, M50NiL, and AISI 52100, Part III: metallurgical examination[J]. Tribology Transactions, 2010, 53 (1): 52-59. [16] BHATTACHARYYA A, SUBHASH G, ARAKERE N, et al. Influence of residual stress and temperature on the cyclic hardening response of M50 high-strength bearing steel subjected to rolling contact fatigue[J]. Journal of Engineering Materials and Technology, 2016, 138 (2): 1-51. [17] CENTO P, DAREING D W. Ceramic materials in hybrid ball bearings[J]. Tribology Transactions, 1999, 42 (4): 707-714. doi: 10.1080/10402009908982273 [18] HAGER JR C H, DOLL G L, EVANS R D, et al. Minimum quantity lubrication of M50/M50and M50/Si3N4tribological interfaces[J]. Wear, 2011, 271 (9/10): 1761-1771. [19] 刘佐民. M50高速钢高温摩擦磨损特性的研究[J]. 摩擦学学报, 1997, 17 (1): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX701.005.htmLIUZuo-min. Friction and wear characteristics of M50high speed steel at elevated temperature[J]. Tribology, 1997, 17 (1): 38-44. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX701.005.htm [20] NELIAS D, DUMONT M L, COUHIER F, et al. Experimental and theoretical investigation on rolling contact fatigue of 52 100and M50steels under EHL or Micro-EHL conditions[C]∥ASME. Proceedings of the 1997 Joint ASME/STLE/IMechE World Tribology Conference. New York: ASME, 1997: 184-190. [21] WANG Li-qin, PENG Bo, GU Le, et al. Tribological Performance of M50steel tribo-parts[J]. Tribology Transactions, 2012, 55 (2): 191-198. doi: 10.1080/10402004.2011.648825 [22] PENG Bo, WANG Li-qin, FAN Shou-xiao, et al. A twodisk test rig for researching the damage behavior of rolling/sliding contact surfaces under extreme conditions[J]. Advanced Materials Research, 2011, 291-294: 1500-1505. [23] AL-HAMOOD A, CLARKEL A, EVANS H P. Experimental determination of heat partition in elastohydrodynamic contacts[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229 (8): 940-949. [24] BOBZIN K, BROGELMANN T, STAHL K, et al. Friction reduction of highly-loaded rolling-sliding contacts by surface modifications under elasto-hydrodynamic lubrication[J]. Wear, 2015, 328-329: 217-228. [25] BREWE D E, HAMROCK B J. Simplified solution for elliptical-contact deformation between two elastic solids[J]. Journal of Lubrication Technology, 1977, 99 (4): 405-409.