留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速重载滑滚摩擦副表面损伤的力学特性

彭波 孔文秦 贾磊 李永俊 王黎钦

彭波, 孔文秦, 贾磊, 李永俊, 王黎钦. 高速重载滑滚摩擦副表面损伤的力学特性[J]. 交通运输工程学报, 2017, 17(3): 75-82.
引用本文: 彭波, 孔文秦, 贾磊, 李永俊, 王黎钦. 高速重载滑滚摩擦副表面损伤的力学特性[J]. 交通运输工程学报, 2017, 17(3): 75-82.
PENG Bo, KONG Wen-qin, JIA Lei, LI Yong-jun, WANG Li-qin. Mechanics characteristics of surface damage on sliding-rolling friction pair under high-speed and heavy-load condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 75-82.
Citation: PENG Bo, KONG Wen-qin, JIA Lei, LI Yong-jun, WANG Li-qin. Mechanics characteristics of surface damage on sliding-rolling friction pair under high-speed and heavy-load condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 75-82.

高速重载滑滚摩擦副表面损伤的力学特性

基金项目: 

国家自然科学基金项目 51675120

国家973计划项目 2013CB632305

详细信息
    作者简介:

    彭波(1982-), 女, 山东郓城人, 中国运载火箭技术研究院高级工程师, 工学博士, 从事苛刻环境下摩擦副动态特性研究

  • 中图分类号: V233.45

Mechanics characteristics of surface damage on sliding-rolling friction pair under high-speed and heavy-load condition

More Information
    Author Bio:

    PENG Bo(1982-), female, senior engineer, PhD, +86-10-88537169, pbtaishan@163.com

  • 摘要: 采用有限元法建立了M50钢滑滚摩擦副的弹塑性接触模型, 在接触应力约为4.0GPa、线速度约为50m·s-1的高速重载工况下, 分析了其等效应力、剪切应力场与表层塑性变形, 研究了摩擦因数与相对滑动速度对M50钢滑滚摩擦副接触行为的影响, 并对比了M50钢双滚子滑滚试验中的表层塑性变形。计算结果表明: M50钢摩擦副的最大接触应力和椭圆接触区长、短轴长度的有限元分析结果与Hertz理论计算结果的偏差分别为2.66%、0.26%、6.43%;当摩擦因数由0.1增加到0.5时, 最大等效应力的位置由摩擦副次表层约0.5mm处逐渐向接触表面发展; 摩擦副表面发生胶合失效时的摩擦因数大于0.3, 接触表面最大等效应力大于1 700 MPa; 胶合失效发生时, M50钢摩擦副的应力和塑性应变具有特定的方向性, 表现在滑滚比分别为0.12、0.15条件下, 接触点处线速度较高的表面最大等效应力分别达到2 847、2 689 MPa, 产生较大的塑性应变, 最大值分别达到0.062、0.061, 而线速度较低的表面最大等效应力分别为2 269、2 101 MPa, 产生的最大塑性变形相对较小, 分别为0.040、0.039。

     

  • 图  1  双滚子滑滚摩擦副接触模型

    Figure  1.  Contact model of two-disk sliding-rolling friction pair

    图  2  工况1表层塑性变形

    Figure  2.  Plastic deformations of surface layers under condition 1

    图  3  工况2表层塑性变形

    Figure  3.  Plastic deformations of surface layers under condition 2

    图  4  双滚子摩擦副静态接触应力

    Figure  4.  Static contact stresses of two-disk friction pair

    图  5  摩擦因数对滑滚摩擦副等效应力场的影响

    Figure  5.  Influence of friction coefficient on Von Mises stress of sliding-rolling friction pair

    图  6  滑滚摩擦副沿深度方向的等效应力

    Figure  6.  Von Mises stresses of sliding-rolling friction pair in depth direction

    图  7  工况1时滑滚摩擦副的等效应力

    Figure  7.  Von Mises stresses of sliding-rolling friction pair under condition 1

    图  8  工况2时滑滚摩擦副的等效应力

    Figure  8.  Von Mises stresses of sliding-rolling friction pair under condition 2

    图  9  工况1时滑滚摩擦副的剪切应力

    Figure  9.  Shear stresses of sliding-rolling friction pair under condition 1

    图  10  工况2时滑滚摩擦副的剪切应力

    Figure  10.  Shear stresses of sliding-rolling friction pair under condition 2

    图  11  两种工况下滑滚摩擦副的塑性应变

    Figure  11.  Plastic strains of sliding-rolling friction pair under conditions 1, 2

    表  1  摩擦副分析工况

    Table  1.   Analysis conditions of friction pair

    下载: 导出CSV

    表  2  室温下M50钢的材料属性

    Table  2.   Material properties of M50steel at room temperature

    下载: 导出CSV

    表  3  计算结果对比

    Table  3.   Comparison of calculation results

    下载: 导出CSV
  • [1] EBERT F J. An overview of performance characteristics, experiences and trends of aerospace engine bearings technologies[J]. Chinese Journal of Aeronautics, 2007, 20 (4): 378-384. doi: 10.1016/S1000-9361(07)60058-2
    [2] 徐流杰, 魏世钟, 张永振, 等. 轧辊用高钒高速钢的滚-滑动磨损性能及失效行为研究[J]. 摩擦学学报, 2009, 29 (1): 55-60. doi: 10.3321/j.issn:1004-0595.2009.01.010

    XU Liu-jie, WEI Shi-zhong, ZHANG Yong-zhen, et al. Rolling/sliding wear property and failure behavior of highvanadium high-speed steel for rolls[J]. Tribology, 2009, 29 (1): 55-60. (in Chinese). doi: 10.3321/j.issn:1004-0595.2009.01.010
    [3] SILAEV B M, FEDOROV D G, DANILENKO P A. Dynamic of damage of aircraft engine high-speed rollingelement bearings tested in low-viscosity model mediums[J]. Procedia Engineering, 2017, 176: 43-49. doi: 10.1016/j.proeng.2017.02.271
    [4] SILAEV B M, DANILENKO P A. Architecture of a multifactor conceptual model of high-speed rolling-contact bearing for aircraft engines and research guidelines[J]. Russian Aeronautics, 2014, 57 (4): 416-420. doi: 10.3103/S1068799814040175
    [5] WANG L, WOOD R J K. The influence of contact conditions on surface reaction layers formed between steel surfaces lubricated by an aviation oil[J]. Tribology International, 2007, 40 (10-12): 1655-1666. doi: 10.1016/j.triboint.2007.02.014
    [6] INGRAM M, HAMER C, SPIKES H. A new scuffing test using contra-rotation[J]. Wear, 2015, 328-329: 229-240. doi: 10.1016/j.wear.2015.01.080
    [7] FAN Jing-yun, SPIKES H. New test for mild lubricated wear in rolling-sliding contacts[J]. Tribology Transactions, 2007, 50 (2): 145-153. doi: 10.1080/10402000701255476
    [8] WOJCIECHOWSKI L, EYMARD S, IGNASZAK Z, et al. Fundamentals of ductile cast iron scuffing at the boundary lubrication regime[J]. Tribology International, 2015, 90: 445-454. doi: 10.1016/j.triboint.2015.05.011
    [9] ZENG Dong-fang, LU Liao-tao, ZHANG Ning, et al. Influence of a hybrid treatment consisting of fine particle bombardment and powder impact plating on the scuffing behavior of ductile cast iron[J]. Wear, 2017, 372-373: 1-11. doi: 10.1016/j.wear.2016.11.019
    [10] SAVOLAINEN M, LEHTOVAARA A. An experimental approach for investigating scuffing initiation due to overload cycles with a twin-disc test device[J]. Tribology International, 2017, 109: 311-318. doi: 10.1016/j.triboint.2017.01.005
    [11] QUILLIEN M, GRAS R, COLLONGEAT L, et al. A testing device for rolling-sliding behavior in harsh environments: the twin-diskcryotribometer[J]. Tribology International, 2001, 34 (4): 287-292. doi: 10.1016/S0301-679X(01)00012-3
    [12] SNIDLE R W, DHULIPALLA A K, EVANS H P. Scuffing performance of a hard coating under EHL conditions at sliding speeds up to 16m/s and contact pressures up to 2.0GPa[C]∥ASME. 10th International Power Transmission and Gearing Conference. New York: ASME, 2007: 697-715.
    [13] MBAREK M, RHAIEM S, KHARRAT M, et al. Experimental study of the rolling-sliding contact conditions in a PA66/steel gear using twin-disc test rig: friction and wear analysis[J]. Surface Review and Letters, 2015, 22 (6): 1-11.
    [14] ROSADO L, FORSRER N H, Thompson K L, et al. Rolling contact fatigue life and spall propagation of AISI M50, M50NiL, and AISI 52100, Part I: experimental results[J]. Tribology Transactions, 2010, 53 (1): 29-41.
    [15] FORSTER N E, ROSADO L, OGDEN W P, et al. Rollingcontact fatigue life and spall propagation of AISI M50, M50NiL, and AISI 52100, Part III: metallurgical examination[J]. Tribology Transactions, 2010, 53 (1): 52-59.
    [16] BHATTACHARYYA A, SUBHASH G, ARAKERE N, et al. Influence of residual stress and temperature on the cyclic hardening response of M50 high-strength bearing steel subjected to rolling contact fatigue[J]. Journal of Engineering Materials and Technology, 2016, 138 (2): 1-51.
    [17] CENTO P, DAREING D W. Ceramic materials in hybrid ball bearings[J]. Tribology Transactions, 1999, 42 (4): 707-714. doi: 10.1080/10402009908982273
    [18] HAGER JR C H, DOLL G L, EVANS R D, et al. Minimum quantity lubrication of M50/M50and M50/Si3N4tribological interfaces[J]. Wear, 2011, 271 (9/10): 1761-1771.
    [19] 刘佐民. M50高速钢高温摩擦磨损特性的研究[J]. 摩擦学学报, 1997, 17 (1): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX701.005.htm

    LIUZuo-min. Friction and wear characteristics of M50high speed steel at elevated temperature[J]. Tribology, 1997, 17 (1): 38-44. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX701.005.htm
    [20] NELIAS D, DUMONT M L, COUHIER F, et al. Experimental and theoretical investigation on rolling contact fatigue of 52 100and M50steels under EHL or Micro-EHL conditions[C]∥ASME. Proceedings of the 1997 Joint ASME/STLE/IMechE World Tribology Conference. New York: ASME, 1997: 184-190.
    [21] WANG Li-qin, PENG Bo, GU Le, et al. Tribological Performance of M50steel tribo-parts[J]. Tribology Transactions, 2012, 55 (2): 191-198. doi: 10.1080/10402004.2011.648825
    [22] PENG Bo, WANG Li-qin, FAN Shou-xiao, et al. A twodisk test rig for researching the damage behavior of rolling/sliding contact surfaces under extreme conditions[J]. Advanced Materials Research, 2011, 291-294: 1500-1505.
    [23] AL-HAMOOD A, CLARKEL A, EVANS H P. Experimental determination of heat partition in elastohydrodynamic contacts[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229 (8): 940-949.
    [24] BOBZIN K, BROGELMANN T, STAHL K, et al. Friction reduction of highly-loaded rolling-sliding contacts by surface modifications under elasto-hydrodynamic lubrication[J]. Wear, 2015, 328-329: 217-228.
    [25] BREWE D E, HAMROCK B J. Simplified solution for elliptical-contact deformation between two elastic solids[J]. Journal of Lubrication Technology, 1977, 99 (4): 405-409.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  81
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-25
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回