留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复合分派规则的进场航班排序方法

张军峰 郑志祥 葛腾腾

张军峰, 郑志祥, 葛腾腾. 基于复合分派规则的进场航班排序方法[J]. 交通运输工程学报, 2017, 17(3): 141-150.
引用本文: 张军峰, 郑志祥, 葛腾腾. 基于复合分派规则的进场航班排序方法[J]. 交通运输工程学报, 2017, 17(3): 141-150.
ZHANG Jun-feng, ZHENG Zhi-xiang, GE Teng-teng. Sequencing approach of arrival aircrafts based on composite dispatching rules[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 141-150.
Citation: ZHANG Jun-feng, ZHENG Zhi-xiang, GE Teng-teng. Sequencing approach of arrival aircrafts based on composite dispatching rules[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 141-150.

基于复合分派规则的进场航班排序方法

基金项目: 

国家自然科学基金项目 71401072

江苏省自然科学基金项目 BK20130814

详细信息
    作者简介:

    张军峰(1979-), 男, 江苏建湖人, 南京航空航天大学副教授, 工学博士, 从事空管研究

  • 中图分类号: V355.2

Sequencing approach of arrival aircrafts based on composite dispatching rules

More Information
  • 摘要: 为解决航班延误问题, 提出了基于复合分派规则的进场航班排序方法。基于机器调度理论, 将最小化加权总延误为目标的进场航班排序问题等效为最小化加权总滞后的机器调度问题; 考虑顺序决定的准备时间约束、提交时间约束与最后期限约束, 构建了进场航班排序模型; 引入加权最短加工时间因子、松弛因子、准备时间因子、提交时间因子与最后期限因子, 提出了进场航班排序的复合分派规则, 设计了进场航班排序的启发式算法; 基于实际案例, 对比了采用提出的排序方法、先到先服务规则与Lingo软件得到的进场加权总延误、总延误与最大延误。计算结果表明: 提出的排序方法在30架次航班数值仿真中, 加权总延误比先到先服务规则缩短了31min, 延误航班数量减少了6架次; 在以上海浦东机场北向运行为场景的实际案例验证中, 基于排序方法的优化降落时间与Lingo软件的仿真结果相同, 与实际降落时间相比, 平均每架次航班提前了2.4min降落。

     

  • 图  1  延长”三边”雷达引导

    Figure  1.  Radar vectoring through extending downwind leg

    图  2  进场航班排序情形A的松弛因子

    Figure  2.  Slack term factor of arrival aircraft sequencing under condition A

    图  3  进场航班排序情形B的松弛因子

    Figure  3.  Slack term factor of arrival aircraft sequencing under condition B

    图  4  进场航班排序情形C的松弛因子

    Figure  4.  Slack term factor of arrival aircraft sequencing under condition C

    图  5  进场航班排序启发式算法流程

    Figure  5.  Heuristic algorithm flowchart of arrival aircraft sequencing

    图  6  30架次航班的仿真场景

    Figure  6.  Simulation scenario of 30aircrafts

    图  7  30架次航班的仿真结果

    Figure  7.  Simulation results of 30aircrafts

    图  8  σ为250s时30架次航班的仿真结果

    Figure  8.  Simulation results of 30aircrafts whenσis 250

    图  9  σ为350s时30架次航班的仿真结果

    Figure  9.  Simulation results of 30aircrafts whenσis 350

    图  10  上海浦东机场北向运行场景

    Figure  10.  Northbound operation scenario in Shanghai Pudong Airport

    图  11  西北向进场飞行时间分布

    Figure  11.  Arrival flight time distribution from Northwest

    图  12  南向进场飞行时间分布

    Figure  12.  Arrival flight time distribution from South

    图  13  上海浦东机场北向运行验证场景

    Figure  13.  Validation scenario of Northbound operation in Shanghai Pudong Airport

    表  1  变量描述

    Table  1.   Variable descriptions

    下载: 导出CSV

    表  2  尾流间隔标准

    Table  2.   Wake vortex separation standards

    下载: 导出CSV

    表  3  复合分派规则

    Table  3.   Composite dispatching rules

    下载: 导出CSV

    表  4  仿真结果对比

    Table  4.   Comparison of simulation results

    下载: 导出CSV

    表  5  验证结果对比

    Table  5.   Comparison validation results

    下载: 导出CSV
  • [1] BENELL J A, MESGARPOUR M, POTTS C N. Airport runway scheduling[J]. Quarterly Journal of Operations Research, 2011, 9 (2): 115-138.
    [2] BEASLEY J E, KRISHNAMOORTHY M, SHARAIHA Y M, et. al. Scheduling aircraft landings-the static case[J]. Transportation Science, 2000, 34 (2): 180-197. doi: 10.1287/trsc.34.2.180.12302
    [3] LEE H, BALAKRISHNAN H. A study of tradeoffs in scheduling terminal-area operations[J]. Proceedings of the IEEE, 2008, 96 (12): 2081-2095. doi: 10.1109/JPROC.2008.2006145
    [4] BALAKRISHNAN H, CHANDRAN B G. Algorithm for scheduling runway operations under constrained position shifting[J]. Operation Research, 2010, 58 (6): 1650-1665. doi: 10.1287/opre.1100.0869
    [5] EUN Y, HWANG I, BANG H. Optimal arrival flight sequencing and scheduling using discrete airborne delays[J]. IEEE Transaction on Intelligent Transportation Systems, 2010, 11 (2): 359-373. doi: 10.1109/TITS.2010.2044791
    [6] D'ARIANO A, PISTELLI M, PACCIARELLI D. Aircraft retiming and rerouting in vicinity of airports[J]. IET Intelligent Transport Systems, 2012, 6 (4): 433-443. doi: 10.1049/iet-its.2011.0182
    [7] SAMA M, D'ARIANO A, PACCIARELLI D. Rolling horizon approach for aircraft scheduling in the terminal control area of busy airports[J]. Transportation Research Part E: Logistics and Transportation Review, 2013, 60: 140-155. doi: 10.1016/j.tre.2013.05.006
    [8] TESFAY Y Y. Modified panel data regression model and its applications to the airline industry: modeling the load factor of Europe North and Europe Mid Atlantic flights[J]. Journal of Traffic and Transportation Engineering: English Edition, 2016, 3 (4): 283-295. doi: 10.1016/j.jtte.2016.01.006
    [9] 张军峰, 王菲, 葛腾腾. 基于分支定界法的进场航空器动态排序与调度[J]. 系统仿真学报, 2016, 28 (8): 1909-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201608029.htm

    ZHANG Jun-feng, WANG Fei, GE Teng-teng. Dynamic arrival sequencing and scheduling based on branch and bound algorithm[J]. Journal of System Simulation, 2016, 28 (8): 1909-1914. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201608029.htm
    [10] HU Xiao-bing, PAOLO E D. Binary-representation-based genetic algorithm for arrival sequencing and scheduling[J]. IEEE Transaction on Intelligent Transportation Systems, 2008, 9 (2): 301-310. doi: 10.1109/TITS.2008.922884
    [11] HU Xiao-bing, PAOLO E D. An efficient genetic algorithm with uniform crossover for air traffic control[J]. Computers and Operations Research, 2009, 36 (1): 245-259. doi: 10.1016/j.cor.2007.09.005
    [12] 张启钱, 胡明华, 张洪海. 基于RHC-GA的多跑道进离场航班多目标动态优化模型[J]. 交通运输工程学报, 2015, 15 (2): 70-78. doi: 10.3969/j.issn.1671-1637.2015.02.010

    ZHANG Qi-qian, HU Ming-hua, ZHANG Hong-hai. Dynamic multi-objective optimization model of arrival and departure flights on multiple runways based on RHC-GA[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (2): 70-78. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.02.010
    [13] ZHAN Zhi-hui, ZHANG Jun, LI Yun, et al. An efficient ant colony system based on receding horizon control for the aircraft arrival sequencing and scheduling problem[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11 (2): 399-412. doi: 10.1109/TITS.2010.2044793
    [14] YU Sheng-peng, CAO Xian-bin, ZHANG Jun. A real-time schedule method for aircraft landing scheduling problem based on cellular automation[J]. Applied Soft Computing, 2011, 11 (4): 3485-3493. doi: 10.1016/j.asoc.2011.01.022
    [15] CAO Yi, RATHINAM S, SUN Deng-feng. Greedy-heuristicaided mixed-integer linear programming approach for arrival scheduling[J]. Journal of Aerospace Information Systems, 2013, 10 (7): 323-336. doi: 10.2514/1.I010030
    [16] SALEHIPOUR A, MODARRES M, NAENI L M. An efficient hybrid meta-heuristic for aircraft landing problem[J]. Computers and Operations Research, 2013, 40 (1): 207-213. doi: 10.1016/j.cor.2012.06.004
    [17] ANDREEVA-MORI A, SUZUKI S, ITOH E. Rule derivation for arrival aircraft sequencing[J]. Aerospace Science and Technology, 2013, 30 (1): 200-209. doi: 10.1016/j.ast.2013.08.004
    [18] MAERE G D, ATKIN J A D. Pruning rules for optimal runway sequencing with airline preferences[J]. Lecture Notes in Management Science, 2015, 7: 76-82.
    [19] FAYE A. Solving the aircraft landing problem with time discretization approach[J]. European Journal of Operational Research, 2015, 242 (3): 1028-1038. doi: 10.1016/j.ejor.2014.10.064
    [20] XU Bo. An efficient ant colony algorithm based on wake-vortex modeling method for aircraft scheduling problem[J]. Journal of Computational and Applied Mathematics, 2017, 317: 157-170. doi: 10.1016/j.cam.2016.11.043
    [21] HANCERLIOGULLARI G, RABADI G, AL-SALEM A H, et al. Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem[J]. Journal of Air Transport Management, 2013, 32: 39-48. doi: 10.1016/j.jairtraman.2013.06.001
    [22] ALLAHVERDI A. The third comprehensive survey on scheduling problems with setup times/costs[J]. European Journal of Operational Research, 2015, 246 (2): 345-378.
    [23] KAPLAN S, RABADI G. Exact and heuristic algorithms for the aerial refueling parallel machine scheduling with due dateto-deadline window and ready times[J]. Computers and Industrial Engineering, 2012, 62 (1): 276-285.
    [24] CHEN Jing-fang. Scheduling on unrelated parallel machines with sequence-and machine-dependent setup times and duedate constraints[J]. The International Journal of Advanced Manufacturing Technology, 2009, 44 (11/12): 1204-1212.
    [25] PFUND M, FOWLER J W, GADKARI A, et al. Scheduling jobs on parallel machines with setup times and ready times[J]. Computers and Industrial Engineering, 2008, 54 (4): 764-782.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  670
  • HTML全文浏览量:  140
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-23
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回