留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-混凝土组合梁温度效应的解析解

刘永健 刘江 张宁 封博文 XULei

刘永健, 刘江, 张宁, 封博文, XULei. 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17(4): 9-19.
引用本文: 刘永健, 刘江, 张宁, 封博文, XULei. 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17(4): 9-19.
LIU Yong-jian, LIU Jiang, ZHANG Ning, FENG Bo-wen, XU Lei. Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 9-19.
Citation: LIU Yong-jian, LIU Jiang, ZHANG Ning, FENG Bo-wen, XU Lei. Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 9-19.

钢-混凝土组合梁温度效应的解析解

基金项目: 

国家自然科学基金项目 51378068

交通运输部建设科技项目 2014 318 363 230

陕西省交通运输厅科研项目 15-24k

陕西省交通运输厅科研项目 16-29k

详细信息
    作者简介:

    刘永健(1966-), 男, 江西玉山人, 长安大学教授, 工学博士, 从事钢桥与组合结构桥梁研究

  • 中图分类号: U448.216

Analytical solution of temperature effects of steel-concrete composite girder

More Information
    Author Bio:

    LIU Yong-jian(1966-), male, professor, PhD, +86-29-82334577, lyj.chd@gmail.com

  • 摘要: 针对考虑和不考虑界面滑移2种情况, 在任意温度分布作用下, 推导了钢-混凝土组合梁界面剪力、相对滑移和温度应力理论计算公式, 采用有限元模拟对考虑界面滑移的公式进行了验证, 并在钢-混凝土温差模式(模式1)、《公路桥涵设计通用规范》 (JTG D60—2015) 温差模式(模式2) 和英国规范BS5400温差模式(模式3) 下, 对比了温度效应的计算结果。分析结果表明: 采用考虑界面滑移的剪力理论公式计算出的组合梁界面剪力分布与有限元计算结果规律一致, 3种模式下剪力最大偏差分别为1.15%、2.65%和3.41%;组合梁界面剪力服从双曲余弦函数分布, 界面滑移服从双曲正弦函数分布; 不考虑滑移与考虑滑移计算得到的界面最大剪力基本相等, 最大偏差仅为1.22%;组合梁跨中温度应力计算值的最大偏差小于1%, 但组合梁端部温度应力计算值偏差较大, 模式3温差为20℃时, 考虑滑移时的混凝土底部温度拉应力为不考虑滑移时的1.9倍; 组合梁的界面温度效应与温差成线性关系, 斜率与温度分布模式有关, 模式1的界面剪力、界面剪应力和界面滑移的变化速率最大, 分别为9.138kN·℃-1、0.067MPa·℃-1和5.263×10-3 mm·℃-1;温差为30℃时, 模式1的界面剪力、界面剪应力和界面滑移变化速率均为模式3的3倍以上, 因此, 不考虑钢梁温度梯度会使组合梁界面剪力、相对滑移与温度应力计算结果产生偏差, 且偏差会随温差的增大而增大。

     

  • 图  1  组合梁计算坐标系

    Figure  1.  Calculation coordinate system of composite girder

    图  2  组合梁实际应力分布

    Figure  2.  Actual stress distribution of composite girder

    图  3  组合梁非线性温度分布

    Figure  3.  Nonlinear temperature distribution of composite girder

    图  4  组合梁自约束应变

    Figure  4.  Self-restrained strain of composite girder

    图  5  组合梁受力模式

    Figure  5.  Mechanic model of composite girder

    图  6  组合梁应变分布

    Figure  6.  Strain distribution of composite girder

    图  7  钢-混组合梁断面(单位: mm)

    Figure  7.  Section of steel-concrete composite girder (unit: mm)

    图  8  温度梯度模式(单位: mm)

    Figure  8.  Temperature gradient patterns (unit: mm)

    图  9  有限元模型

    Figure  9.  Finite element model

    图  10  模式1界面剪力分布

    Figure  10.  Distributions of interface shear force in pattern 1

    图  11  模式2界面剪力分布

    Figure  11.  Distributions of interface shear force in pattern 2

    图  12  模式3界面剪力分布

    Figure  12.  Distributions of interface shear force in pattern 3

    图  13  界面剪应力分布

    Figure  13.  Distributions of interface shear stress

    图  14  界面剪力与温差的关系

    Figure  14.  Relationships between interface shear force and temperature difference

    图  15  界面剪应力与温差的关系

    Figure  15.  Relationships between interface shear stress and temperature difference

    图  16  界面相对滑移与温差的关系

    Figure  16.  Relationships between interface relative slippage and temperature difference

    表  1  组合梁温度效应主要计算结果Fig.1 Main calculated results of composite girder's thermal effects

    下载: 导出CSV
  • [1] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32 (2): 3-8. doi: 10.3321/j.issn:1000-131X.1999.02.001

    NIE Jian-guo, YU Zhi-wu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32 (2): 3-8. (in Chinese). doi: 10.3321/j.issn:1000-131X.1999.02.001
    [2] 刘永健, 高诣民, 周绪红, 等. 中小跨径钢-混凝土组合梁桥技术经济性分析[J]. 中国公路学报, 2017, 30 (3): 1-13. doi: 10.3969/j.issn.1001-7372.2017.03.001

    LIU Yong-jian, GAO Yi-min, ZHOU Xu-hong, et al. Technical and economic analysis in steel-concrete composite girder bridges with small and medium span[J]. China Journal of Highway and Transport, 2017, 30 (3): 1-13. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.001
    [3] BERWANGER C, SYMKO Y. Thermal stresses in steelconcrete composite bridges[J]. Canadian Journal of Civil Engineering, 1975, 2 (1): 66-84. doi: 10.1139/l75-007
    [4] CHAN M Y T, BEAUCHAMP J C, CHEUNG M S, et al. Thermal stresses in composite box-girder bridges[C]∥Canadian Society for Civil Engineering. Third International Conference on Short and Medium Span Bridges. Toronto: Canadian Society for Civil Engineering, 1990: 355-366.
    [5] CHANG S P, IM C K. Thermal behaviour of composite box girder bridges[J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2000, 140 (2): 117-126. doi: 10.1680/stbu.2000.140.2.117
    [6] DILGER W H, GHALI A, CHAN M, et al. Temperature stresses in composite box girder bridges[J]. Journal of Structural Engineering, 1983, 109 (6): 1460-1478. doi: 10.1061/(ASCE)0733-9445(1983)109:6(1460)
    [7] PRIESTLEY M J. Thermal gradients in bridges-some design considerations[J]. New Zealand Engineering, 1972, 27 (7): 228-233.
    [8] ELBADRY M M, GHALI A. Temperature variations in concrete bridges[J]. Journal of Structural Engineering, 1983, 109 (10): 2355-2374. doi: 10.1061/(ASCE)0733-9445(1983)109:10(2355)
    [9] ELBADRY M M, GHALI A. Nonlinear temperature distribution and its effects on bridges[J]. IABSE Proceedings, 1983, 66: 169-191.
    [10] 刘兴法. 预应力混凝土箱梁温度应力计算方法[J]. 土木工程学报, 1986, 19 (1): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198601005.htm

    LIU Xing-fa. Computation of temperature stresses for prestressed concrete box girders[J]. China Civil Engineering Journal, 1986, 19 (1): 46-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198601005.htm
    [11] 张元海, 李乔. 桥梁结构日照温差二次力及温度应力计算方法研究[J]. 中国公路学报, 2004, 17 (1): 49-52. doi: 10.3321/j.issn:1001-7372.2004.01.011

    ZHANG Yuan-hai, LI Qiao. Study of the method for calculation of the thermal stress and secondary force of bridge structure by solar radiation[J]. China Journal of Highway and Transport, 2004, 17 (1): 49-52. (in Chinese). doi: 10.3321/j.issn:1001-7372.2004.01.011
    [12] 张元海, 李乔. 预应力混凝土连续箱梁桥的温度应力分析[J]. 土木工程学报, 2006, 39 (3): 98-102. doi: 10.3321/j.issn:1000-131X.2006.03.015

    ZHANG Yuan-hai, LI Qiao. Analysis of thermal stress for prestressed concrete continuous box-girder bridges[J]. China Civil Engineering Journal, 2006, 39 (3): 98-102. (in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.015
    [13] 彭友松, 强士中. 混凝土桥梁结构温度自应力计算方法探讨[J]. 西南交通大学学报, 2006, 41 (4): 452-455. doi: 10.3969/j.issn.0258-2724.2006.04.010

    PENG You-song, QIANG Shi-zhong. Investigation into computational method of self-equilibrating thermal stresses in concrete bridges[J]. Journal of Southwest Jiaotong University, 2006, 41 (4): 452-455. (in Chinese). doi: 10.3969/j.issn.0258-2724.2006.04.010
    [14] 彭友松, 强士中. 公路混凝土箱梁三维温度应力计算方法[J]. 交通运输工程学报, 2007, 7 (1): 63-67. doi: 10.3321/j.issn:1671-1637.2007.01.014

    PENG You-song, QIANG Shi-zhong. 3-D thermal stress computation method of highway concrete box-girder[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (1): 63-67. (in Chinese). doi: 10.3321/j.issn:1671-1637.2007.01.014
    [15] 彭友松, 朱晓文, 强士中. 混凝土箱梁温度应力三维分析[J]. 铁道学报, 2009, 31 (3): 116-121. doi: 10.3969/j.issn.1001-8360.2009.03.021

    PENG You-song, ZHU Xiao-wen, QIANG Shi-zhong. Three dimensional analyses of thermal stresses in concrete boxgirders[J]. Journal of the China Railway Society, 2009, 31 (3): 116-121. (in Chinese). doi: 10.3969/j.issn.1001-8360.2009.03.021
    [16] 颜昌清, 阳先全. 混凝土薄壁箱梁横向温度应力分析[J]. 桥梁建设, 2009 (3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200903005.htm

    YAN Chang-qing, YANG Xian-quan. Analysis of transverse temperature stress of concrete thin-wall box girder[J]. Bridge Construction, 2009 (3): 25-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200903005.htm
    [17] 任翔, 黄平明, 韩万水. 混凝土薄壁箱形结构横向温度应力解析计算方法[J]. 中国公路学报, 2012, 25 (1): 76-82. doi: 10.3969/j.issn.1001-7372.2012.01.012

    REN Xiang, HUANG Ping-ming, HAN Wan-shui. Transverse temperature stress computation method of concrete thin-wall box-shape structure[J]. China Journal of Highway and Transport, 2012, 25 (1): 76-82. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.01.012
    [18] 陈彦江, 王力波, 李勇. 钢-混凝土组合梁桥温度场及温度效应研究[J]. 公路交通科技, 2014, 31 (11): 85-91. doi: 10.3969/j.issn.1002-0268.2014.11.014

    CHEN Yan-jiang, WANG Li-bo, LI Yong. Research of temperature field and its effect of steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (11): 85-91. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.11.014
    [19] 刘瑜, 邵旭东. 轻型组合梁桥面板在日照作用下温度梯度效应研究[J]. 公路交通科技, 2015, 32 (6): 54-61. doi: 10.3969/j.issn.1002-0268.2015.06.009

    LIU Yu, SHAO Xu-dong. Research on temperature gradient effect of light-weighted composite bridge deck under solar radiation[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (6): 54-61. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.06.009
    [20] 卢磊. 基于ABAQUS钢—混凝土组合梁温度应力研究[D]. 西安: 长安大学, 2015.

    LU Lei. Study on temperature stress of steel and concrete composite beams based ABAQUS[D]. Xi'an: Chang'an University, 2015. (in Chinese).
    [21] 王达, 张永健, 刘扬, 等. 基于健康监测的钢桁加劲梁钢-混组合桥面系竖向温度梯度效应分析[J]. 中国公路学报, 2015, 28 (11): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201511006.htm

    WANG Da, ZHANG Yong-jian, LIU Yang, et al. Vertical temperature gradient effect analysis of steel-concrete composite deck system on steel truss stiffening girder with health monitoring[J]. China Journal of Highway and Transport, 2015, 28 (11): 29-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201511006.htm
    [22] 王达, 王海柱, 刘扬. 中、美、欧标准中钢-混组合结构桥面系竖向温度梯度效应的比较[J]. 工业建筑, 2016, 46 (10): 163-168, 173. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201610033.htm

    WANG Da, WANG Hai-zhu, LIU Yang. In comparison with vertical temperature gradient effects of steel-concrete composite bridge deck in Chinese, American and EU codes[J]. Industrial Construction, 2016, 46 (10): 163-168, 173. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201610033.htm
    [23] 张烈. 钢-混凝土组合梁桥早期温度效应试验研究[J]. 公路交通科技: 应用技术版, 2017 (2): 153-156.

    ZHANG Lie. Experimental study on steel-concrete composite girder thermal effect in early age[J]. Journal of Highway and Transportation Research and Development: Application and Technology, 2017 (2): 153-156. (in Chinese).
    [24] 陈玉骥, 叶梅新. 钢-混凝土结合梁在温度作用下的响应分析[J]. 中国铁道科学, 2001, 22 (5): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200105008.htm

    CHEN Yu-ji, YE Mei-xin. Analyses of responses of composite girders under the action of temperature[J]. China Railway Science, 2001, 22 (5): 48-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200105008.htm
    [25] 陈玉骥, 叶梅新. 钢-混凝土连续结合梁的温度效应[J]. 中南大学学报: 自然科学版, 2004, 35 (1): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200401028.htm

    CHEN Yu-ji, YE Mei-xin. Temperature responses of steelconcrete continuous composite girders[J]. Journal of Central South University: Natural Science, 2004, 35 (1): 142-146. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200401028.htm
    [26] 周良, 陆元春, 李雪峰. 钢-混凝土组合梁的温度应力计算[J]. 公路交通科技, 2012, 29 (5): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201205013.htm

    ZHOU Liang, LU Yuan-chun, LI Xue-feng. Calculation of temperature stress of steel-concrete composite beam[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (5): 83-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201205013.htm
    [27] 周勇超, 胡圣能, 宋磊, 等. 钢-混凝土组合梁的温度骤变效应分析[J]. 交通运输工程学报, 2013, 13 (1): 20-26. http://transport.chd.edu.cn/article/id/201301004

    ZHOU Yong-chao, HU Sheng-neng, SONG Lei, et al. Effect analysis of steel-concrete composite beam caused by sudden change of temperature[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (1): 20-26. (in Chinese). http://transport.chd.edu.cn/article/id/201301004
    [28] 阴存欣. 钢-混组合梁温度及收缩效应分析的电算方法[J]. 中国公路学报, 2014, 27 (11): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201411014.htm

    YIN Cun-xin. Computing method for effect analysis of temperature and shrinkage on steel-concrete composite beams[J]. China Journal of Highway and Transport, 2014, 27 (11): 76-83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201411014.htm
    [29] 吴迅, 陈经伟, 肖春, 等. 温差、收缩引起的钢-混凝土组合梁界面处剪力作用研究[J]. 结构工程师, 2009, 25 (1): 41-44, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC200901010.htm

    WU Xun, CHEN Jing-wei, XIAO Chun, et al. Study on shear effect caused by temperature and shrinkage on the interface of steel-concrete composite beams[J]. Structural Engineers, 2009, 25 (1): 41-44, 54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC200901010.htm
    [30] CHEN Quan. Effects of thermal loads on texas steel bridges[D]. Austin: University of Texas at Austin, 2008.
    [31] 孙国晨, 关荣财, 姜英民, 等. 钢-混凝土叠合梁横截面日照温度分布研究[J]. 工程力学, 2006, 23 (11): 122-127, 138. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200611019.htm

    SUN Guo-chen, GUAN Rong-cai, JIANG Ying-min, et al. Sunshine-induced temperature distribution on cross section of steel-concrete composite beams[J]. Engineering Mechanics, 2006, 23 (11): 122-127, 138. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200611019.htm
    [32] AU F T K, CHEUNG S K, THAM L G. Design thermal loading for composite bridges in tropical region[J]. Steel and Composite Structures, 2002, 2 (6): 441-460.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  888
  • HTML全文浏览量:  206
  • PDF下载量:  808
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-02
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回