-
摘要: 优化了传统混凝土箱梁腹板与底板, 提出了装配式桥梁新型结构形式——矩形钢管混凝土组合桁梁桥, 从总体设计、主桁选型、横断面选型、桥面板选型、杆件选型、节点选型与连接构造方面介绍了其结构设计优化过程; 从桥梁的静力性能与地震响应、桥面板的有效宽度与负弯矩区力学性能方面对矩形钢管混凝土组合桁梁桥进行了有限元分析, 并将部分组合技术应用到负弯矩区桥面板连接件的设计中; 从技术性与经济性角度将矩形钢管混凝土组合桁梁桥与预应力混凝土箱梁桥进行了工程量和施工便捷性对比。研究结果表明: 矩形钢管混凝土组合桁梁桥结构选型符合桥梁预制装配、快速建造的工业化要求, 主桁各杆件受力明确, 受力形态主要为轴向拉、压力; 负弯矩区桥面板有效宽度系数为0.899;采用部分组合技术可使桥面板轴向拉力下降75.3%, 有效地提高了桥面板的抗裂性能; 矩形钢管混凝土组合桁梁桥初始输入地震力占同等跨度预应力混凝土箱梁桥的58.9%, 说明矩形钢管混凝土组合桁梁桥具有良好的抗震性能; 钢材用量、混凝土用量、上部结构质量与预应力混凝土箱梁桥的比值分别为1.241、0.485、0.575, 说明矩形钢管混凝土组合桁梁桥结构轻巧, 材料利用率高, 工程造价低, 具有经济优势。Abstract: The webs and bottom slabs of traditional concrete box girder were optimized, and a new structural type of fabricated bridge named RCFST (rectangular concrete filled steel tubular) composite truss bridge was proposed. The structure design optimization procedure was introduced from the aspects of general design, main truss selection, cross section selection, bridge deck slab selection, member bar selection, joint selection and connection structure. The RCFST composite truss bridge was analyzed by finite element method from the static mechanical property and seismic response of the bridge, and the effective width and mechanical property of bridge deck slab in the negative moment zone of the slab. The partial composite technique wasalso used in the design of bridge deck slab connector in the negative moment zone. From the technicality and economy, the RCFST composite truss bridge was compared with the prestressed concrete box girder bridge in terms of engineering quantity and construction convenience. Analysis result shows that the selection of RCFST composite truss bridge structure meets the industrialization requirement of bridge's prefabrication and accelerated construction, and the member bars of main truss with clear force-bearing states mainly carry axial tensions and pressures. The effective width coefficient of bridge deck slab in the negative moment zone is 0.899. The axial tension of bridge deck slab decreases by 75.3% using the partial composite technique, which effectively improves the anti-crack ability of bridge deck slab. The initial input earthquake load of RCFST composite truss bridge accounts for 58.9% of the load of prestressed concrete box girder bridge with the same span, which indicates RCFST composite truss bridge has good anti-seismic property. The ratios of steel quantity, concrete quantity, and superstructure self-weight of RCFST composite truss bridge to prestressed concrete box girder bridge are 1.241, 0.485 and 0.575, respectively, which indicates the RCFST composite truss bridge has good economic advantages, such as simple structure, high utilization of materials and low building cost.
-
表 1 杆件选型与优点
Table 1. Type selection and advantages of member bars
表 2 50~80m跨径组合桁梁桥关键杆件尺寸
Table 2. Key member bar dimensions of 50-80mspan composite truss bridge
表 3 桥型方案抗震性能比较
Table 3. Comparison of seismic performances of bridge types
表 4 有效宽度系数
Table 4. Coefficients of effective width
-
[1] DAUNER H G, ORIBASI A, WRY D. The lully viaduct, a composite bridge with steel tube truss[J]. Journal of Constructional Steel Research, 1998, 46 (1-3): 67-68. doi: 10.1016/S0143-974X(98)00025-X [2] MATO F M, CORNEJO M O, RUBIO L M. Viaduct over River Ulla: an outstanding composite (steel and concrete) high-speed railway viaduct[J]. Structural Engineering International, 2014, 24 (1): 131-136. doi: 10.2749/101686614X13830788506279 [3] 张贵忠. 万州大桥钢管混凝土桁架技术研究[D]. 成都: 西南交通大学 , 2004.ZHANG Gui-zhong. Study on the technologies of CFST truss of Wanzhou Bridge[D]. Chengdu: Southwest Jiaotong University, 2004. (in Chinese). [4] 吴庆雄, 黄育凡, 陈宝春. 钢管混凝土组合桁梁-格构墩轻型桥梁振动台阵试验研究[J]. 工程力学, 2014, 31 (9): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201409014.htmWU Qing-xiong, HUANG Yu-fan, CHEN Bao-chun. Shaking tables testing study of lightweight bridge with CFST composite truss girder and lattice pier[J]. Engineering Mechanics, 2014, 31 (9): 89-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201409014.htm [5] 刘永健, 周绪红, 邹银生, 等. 矩形钢管混凝土横向局部承压强度的试验研究[J]. 建筑结构学报, 2003, 24 (2): 42-48. doi: 10.3321/j.issn:1000-6869.2003.02.008LIU Yong-jian, ZHOU Xu-hong, ZOU Yin-sheng, et al. Experimental research on local bearing strength of concrete filled rectangular steel tube under transverse load[J]. Journal of Building Structures, 2003, 24 (2): 42-48. (in Chinese). doi: 10.3321/j.issn:1000-6869.2003.02.008 [6] 刘永健, 周绪红, 刘君平. 矩形钢管混凝土K型节点受力性能试验[J]. 建筑科学与工程学报, 2007, 24 (2): 36-42. doi: 10.3321/j.issn:1673-2049.2007.02.007LIU Yong-jian, ZHOU Xu-hong, LIU Jun-ping. Experiment on force performance of concrete-filled rectangular steel tube K-joints[J]. Journal of Architecture and Civil Engineering, 2007, 24 (2): 36-42. (in Chinese). doi: 10.3321/j.issn:1673-2049.2007.02.007 [7] 刘永健, 周绪红, 刘君平. 矩形钢管混凝土T、Y型节点受压性能试验[J]. 长安大学学报: 自然科学版, 2008, 28 (5): 48-52. doi: 10.3321/j.issn:1671-8879.2008.05.012LIU Yong-jian, ZHOU Xu-hong, LIU Jun-ping. Behavior of concrete filled rectangular steel tube T-joints and Y-joints under compression[J]. Journal of Chang'an University: Natural Science Edition, 2008, 28 (5): 48-52. (in Chinese). doi: 10.3321/j.issn:1671-8879.2008.05.012 [8] 刘永健, 刘君平, 杨根杰, 等. 主管内填充混凝土矩形钢管桁架受力性能试验研究[J]. 建筑结构学报, 2009, 30 (6): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200906015.htmLIU Yong-jian, LIU Jun-ping, YANG Gen-jie, et al. Experimental research on mechanical behavior of RHS trusses with concrete-filled in chord[J]. Journal of Building Structures, 2009, 30 (6): 107-112. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200906015.htm [9] 刘永健, 周绪红, 刘君平. 主管内填混凝土的矩形钢管X型节点受拉和受弯性能试验研究[J]. 建筑结构学报, 2009, 30 (1): 82-86. doi: 10.3321/j.issn:1000-6869.2009.01.012LIU Yong-jian, ZHOU Xu-hong, LIU Jun-ping. Experimental research on rectangular steel tube X-joints with chord concrete-inside subjected to tension and bending[J]. Journal of Building Structures, 2009, 30 (1): 82-86. (in Chinese). doi: 10.3321/j.issn:1000-6869.2009.01.012 [10] 刘永健, 刘君平, 张俊光. 主管内填混凝土矩形和圆形钢管桁架受弯性能对比试验研究[J]. 建筑结构学报, 2010, 31 (4): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201004012.htmLlU Yong-jian, LlU Jun-ping, ZHANG Jun-guang. Experimental research on RHS and CHS truss with concrete filled chord. Journal of Building Structures, 2010, 31 (4): 86-93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201004012.htm [11] 周绪红, 刘永健, 莫涛, 等. 矩形钢管混凝土桁架设计[J]. 建筑结构, 2004, 34 (1): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200401005.htmZHOU Xu-hong, LIU Yong-jian, MO Tao, et al. Design of concrete filled trusses with rectangular steel tube[J]. Building Structure, 2004, 34 (1): 20-23. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200401005.htm [12] LIU Yong-jian, XIONG Zhi-hua, LUO Ya-lin, et al. Doublecomposite rectangular truss bridge and its joint analysis[J]. Journal of Traffic and Transportation Engineering: English Edition, 2015, 2 (4): 249-257. doi: 10.1016/j.jtte.2015.05.005 [13] 陈宝春, 黄文金. 圆管截面桁梁极限承载力试验研究[J]. 建筑结构学报, 2007, 28 (3): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200703004.htmCHEN Bao-chun, HUANG Wen-jin. Experimental research on ultimate load canying capacity of truss girders made with circular tubes[J]. Journal of Building Structures, 2007, 28 (3): 31-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200703004.htm [14] HAN Lin-hai, XU Wu, HE Shan-hu, et al. Flexural behaviour of concrete filled steel tubular (CFST) chord to hollow tubular brace truss: experiments[J]. Journal of Constructional Steel Research, 2015, 109: 137-151. doi: 10.1016/j.jcsr.2015.03.002 [15] XU Wu, HAN Lin-hai, TAO Zhong. Flexural behaviour of curved concrete filled steel tubular trusses[J]. Journal of Constructional Steel Research, 2014, 93: 119-134. doi: 10.1016/j.jcsr.2013.10.015 [16] FENG Ran, CHEN Yu, GAO Sheng-wei, et al. Numerical investigation of concrete-filled multi-planar CHS inversetriangular tubular truss[J]. Thin-Walled Structures, 2015, 94: 23-37. doi: 10.1016/j.tws.2015.03.030 [17] CHEN Yu, FENG Ran, GAO Sheng-wei. Experimental study of concrete-filled multiplanar circular hollow section tubular trusses[J]. Thin-Walled Structures, 2015, 94: 199-213. doi: 10.1016/j.tws.2015.04.013 [18] FONG M, CHAN S L, UY B. Advanced design for trusses of steel and concrete-filled tubular sections[J]. Engineering Structures, 2011, 33 (12): 3162-3171. [19] MUJAGIC J R U, EASTERLING W S, MURRAY T M. Design and behavior of light composite steel-concrete trusses with drilled standoff screw shear connections[J]. Journal of Constructional Steel Research, 2010, 66 (12): 1483-1491. [20] 高燕梅, 周志祥, 刘东, 等. 装配式钢桁-混凝土组合梁抗裂性能研究[J]. 中国公路学报, 2017, 30 (3): 175-182, 209. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703019.htmGAO Yan-mei, ZHOU Zhi-xiang, LIU Dong, et al. Research on crack resistance of prefabricated steel truss-concrete composite beam[J]. China Journal of Highway and Transport, 2017, 30 (3): 175-182, 209. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703019.htm [21] 张振学, 聂建国, 陶慕轩, 等. 钢-混凝土连续组合桁梁桥受力性能优化[J]. 桥梁建设, 2012, 42 (6): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201206012.htmZHANG Zhen-xue, NIE Jian-guo, TAO Mu-xuan, et al. Optimization of mechanical behavior of steel and concrete continuous composite truss girder bridge[J]. Bridge Construction, 2012, 42 (6): 57-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201206012.htm [22] 刘永健, 张宁, 张俊光. PBL加劲型矩形钢管混凝土的力学性能[J]. 建筑科学与工程学报, 2012, 29 (4): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201204004.htmLIU Yong-jian, ZHANG Ning, ZHANG Jun-guang. Mechanical behavior of concrete-filled square steel tube stiffened with PBL[J]. Journal of Architecture and Civil Engineering, 2012, 29 (4): 13-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201204004.htm [23] 刘永健, 李慧, 张宁, 等. PBL加劲型矩形钢管混凝土界面粘结-滑移性能[J]. 建筑科学与工程学报, 2015, 32 (5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201505002.htmLIU Yong-jian, LI Hui, ZHANG Ning, et al. Interface bond-slip performance of rectangular concrete-filled steel tube stiffened by PBL[J]. Journal of Architecture and Civil Engineering, 2015, 32 (5): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201505002.htm [24] 张宁, 刘永健, 李慧, 等. 弹性基底上受非均匀荷载加劲板的局部屈曲特性[J]. 交通运输工程学报, 2017, 17 (1): 36-44. http://transport.chd.edu.cn/article/id/201701005ZHANG Ning, LIU Yong-jian, LI Hui, et al. Local buckling characteristics of stiffened rectangular plate on elastic foundation subjected to non-uniform loads[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (1): 36-44. (in Chinese). http://transport.chd.edu.cn/article/id/201701005 [25] 程高, 刘永健, 田智娟, 等. PBL加劲型矩形钢管混凝土不等宽T型节点受拉性能[J]. 长安大学学报: 自然科学版, 2015, 35 (3): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201503014.htmCHENG Gao, LIU Yong-jian, TIAN Zhi-juan, et al. Tensile behavior of PBL stiffened concrete-filled rectangular steel tubular unequal T-connections[J]. Journal of Chang'an University: Natural Science Edition, 2015, 35 (3): 83-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201503014.htm [26] 程高, 刘永健, 邱洁霖, 等. PBL加劲型矩形钢管混凝土不等宽T型节点应力集中系数分析[J]. 建筑科学与工程学报, 2014, 31 (4): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201404013.htmCHENG Gao, LIU Yong-jian, QIU Jie-lin, et al. Analysis of stress concentration factor on concrete-filled rectangular steel tube T-joints stiffened with PBL[J]. Journal of Architecture and Civil Engineering, 2014, 31 (4): 74-79. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201404013.htm [27] 聂建国, 李一昕, 陶慕轩, 等. 新型抗拔不抗剪连接件抗拔性能试验[J]. 中国公路学报, 2014, 27 (4): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201404007.htmNIE Jian-guo, LI Yi-xin, TAO Mu-xuan, et al. Experimental research on uplift performance of a new type of uplift restricted-slip free connector[J]. China Journal of Highway and Transport, 2014, 27 (4): 38-45. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201404007.htm [28] NIE Jian-guo, LI Yi-xin, TAO Mu-xuan, et al. Uplift-restricted and slip-permitted T-shape connectors[J]. Journal of Bridge Engineering, 2015, 20 (4): 1-13.