留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高原高寒地区“上”形钢-混凝土组合梁的竖向温度梯度模式

刘江 刘永健 房建宏 刘广龙 STIEMERSF

刘江, 刘永健, 房建宏, 刘广龙, STIEMERSF. 高原高寒地区“上”形钢-混凝土组合梁的竖向温度梯度模式[J]. 交通运输工程学报, 2017, 17(4): 32-44.
引用本文: 刘江, 刘永健, 房建宏, 刘广龙, STIEMERSF. 高原高寒地区“上”形钢-混凝土组合梁的竖向温度梯度模式[J]. 交通运输工程学报, 2017, 17(4): 32-44.
LIU Jiang, LIU Yong-jian, FANG Jian-hong, LIU Guang-long, STIEMER SF. Vertical temperature gradient patterns of上-shaped steel-concrete composite girder in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 32-44.
Citation: LIU Jiang, LIU Yong-jian, FANG Jian-hong, LIU Guang-long, STIEMER SF. Vertical temperature gradient patterns of上-shaped steel-concrete composite girder in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 32-44.

高原高寒地区“上”形钢-混凝土组合梁的竖向温度梯度模式

基金项目: 

交通运输部建设科技项目 2014 318 363 230

交通运输部建设科技项目 2014 318 802 220

详细信息
    作者简介:

    刘江(1991-), 男, 陕西西安人, 长安大学工学博士研究生, 从事桥梁温度效应研究

    刘永健(1966-), 男, 江西玉山人, 长安大学教授, 工学博士

  • 中图分类号: U448.216

Vertical temperature gradient patterns of上-shaped steel-concrete composite girder in arctic-alpine plateau region

More Information
  • 摘要: 以青海省海黄大桥为工程背景, 建立了考虑气象参数的组合梁温度场有限元分析模型, 采用实桥测试数据对模型进行了验证; 分析了“上”形组合梁四季竖向温度分布, 给出了升温和降温时竖向温度梯度简化模式, 研究了太阳辐射强度、气温和风速等气象参数对温差的影响规律, 采用极值统计方法给出了50年一遇气象参数代表值下不同沥青混凝土铺装厚度的“上”形组合梁最不利竖向温度梯度模式。研究结果表明: 在日照升温和夜间降温过程中, 组合梁竖向温度梯度模式不同; 升温过程中最大温差出现在14:00, 温度梯度模式可简化为“顶部5次抛物线”加“底部折线”的形式, 顶部温差受沥青混凝土铺装厚度影响较大, 当铺装厚度分别为0、50、100、150mm时, 顶部温差极大值分别为23.8℃、31.7℃、24.1℃、17.4℃, 底部温差极大值可取5.1℃; 降温过程中最大温差出现在2:00, 温度梯度模式可简化为“顶部双折线”与“底部等温段”的形式, 顶部温差受沥青混凝土铺装厚度影响较大, 当铺装厚度分别为0、50、100、150mm时, 顶部温差极小值分别为-12.2℃、-8.2℃、-5.0℃、-2.9℃, 底部温差极小值可取-16.4℃; “上”形组合梁竖向温度梯度受气象参数的影响, 温度与太阳日辐射总量和气温基本呈线性关系, 而与风速表现出非线性关系; “上”形组合梁升温梯度模式与美国AASHTO规范接近, 但顶部温差取值较美国AASHTO规范高1.7℃, 降温梯度模式与欧洲规范接近, 但底部温差较欧洲规范低8.4℃, 故本文给出的温度梯度模式更为不利。

     

  • 图  1  日照下组合梁换热过程

    Figure  1.  Heat transfer process of composite girder under sunlight

    图  2  主梁断面(单位: cm)

    Figure  2.  Cross section of main girder (unit: cm)

    图  3  温度测点布置(单位: cm)

    Figure  3.  Arrangement of temperature monitoring points (unit: cm)

    图  4  温度场测试

    Figure  4.  Temperature field test

    图  5  桥位处实测气象数据

    Figure  5.  Field test meteorological data at bridge location

    图  6  对流换热边界条件

    Figure  6.  Boundary condition of heat convection

    图  7  腹板阴影高度

    Figure  7.  Shadow height of web

    图  8  测点温度对比

    Figure  8.  Temperature comparison of observation points

    图  9  组合梁竖向温度分布

    Figure  9.  Vertical temperature distributions of composite girder

    图  10  简化的竖向温度梯度模式(单位: mm)

    Figure  10.  Simplified vertical temperature gradient patterns (unit: mm)

    图  11  日太阳辐射总量对温差的影响

    Figure  11.  Effects of daily global solar radiation on temperature differences

    图  12  气温对温差的影响

    Figure  12.  Effects of air temperature on temperature differences

    图  13  风速对温差的影响

    Figure  13.  Effects of wind velocity on temperature differences

    图  14  夏季日太阳辐射总量拟合曲线

    Figure  14.  Fitted curve of daily total solar radiation in summer

    图  15  春季日太阳辐射总量拟合曲线

    Figure  15.  Fitted curve of daily total solar radiation in spring

    图  16  夏季日最大温差拟合曲线

    Figure  16.  Fitted curve of daily maximum temperature difference in summer

    图  17  春季日最大温差拟合曲线

    Figure  17.  Fitted curve of daily maximum temperature difference in spring

    图  18  求夏季日平均气温极大值时的拟合曲线

    Figure  18.  Fitted curve of daily average temperature in summer for solving its maximum value

    图  19  求夏季日平均气温极小值时的拟合曲线

    Figure  19.  Fitted curve of daily average temperature in summer for solving its minimum value

    图  20  春季日平均气温拟合曲线

    Figure  20.  Fitted curve of daily average temperature in spring

    图  21  不同沥青混凝土铺装厚度T1T1的取值

    Figure  21.  Values of T1 and T1 for various laying thicknesses of asphalt concrete

    图  22  温度梯度模式对比

    Figure  22.  Comparison of temperature gradient patterns

    表  1  材料热工参数

    Table  1.   Thermal parameters of each material

    下载: 导出CSV

    表  2  四季典型气候参数

    Table  2.   Typical meteorological parameters of 4seasons

    下载: 导出CSV

    表  3  温差最不利情况

    Table  3.   Conditions of worst temperature differences

    下载: 导出CSV

    表  4  气象参数极值和分布参数

    Table  4.   Extremum values and distribution parameters of meteorological parameters

    下载: 导出CSV

    表  5  温度梯度模式

    Table  5.   Temperature gradient patterns

    下载: 导出CSV
  • [1] CHAN M Y T, BEAUCHAMP J C, CHEUNG M S, et al. Thermal stresses in composite box-girder bridges[C]∥Canadian Society for Civil Engineering. Third International Conference on Short and Medium Span Bridges. Toronto: Canadian Society for Civil Engineering, 1990: 355-366.
    [2] EMANUEL J H, TAYLOR C M. Length-thermal stress relations for composite bridges[J]. Journal of Structural Engineering, 1985, 111 (4): 788-804. doi: 10.1061/(ASCE)0733-9445(1985)111:4(788)
    [3] ZUK W. Thermal behaviour of composite bridges-insulated and uninsulated[J]. Highway Research Record, 1965 (76): 231-253.
    [4] 周勇超, 胡圣能, 宋磊, 等. 钢-混凝土组合梁的温度骤变效应分析[J]. 交通运输工程学报, 2013, 13 (1): 20-26. doi: 10.3969/j.issn.1671-1637.2013.01.004

    ZHOU Yong-chao, HU Sheng-neng, SONG Lei, et al. Effect analysis of steel-concrete composite beam caused by sudden change of temperature[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (1): 20-26. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.01.004
    [5] ZUK W. Simplified design check of thermal stresses in composite highway bridges[J]. Highway Research Record, 1965 (103): 10-13.
    [6] PRIESTLEY M J N. Design of concrete bridges for temperature gradients[J]. Journal of the American Concrete Institute, 1978, 75 (5): 209-217.
    [7] FU H C, NG S F, CHEUNG M S. Thermal behavior of composite bridges[J]. Journal of Structural Engineering, 1989, 116 (12): 3302-3323.
    [8] DILGER W H, GHALI A, CHAN M, et al. Temperature stresses in composite box girder bridges[J]. Journal of Structural Engineering, 1983, 109 (6): 1460-1478. doi: 10.1061/(ASCE)0733-9445(1983)109:6(1460)
    [9] ELBADRY M M, GHALI A. Temperature variations in concrete bridges[J]. Journal of Structural Engineering, 1983, 109 (10): 2355-2374. doi: 10.1061/(ASCE)0733-9445(1983)109:10(2355)
    [10] SIVAKUMARAN K S, DILGER W H. Analysis of concrete structures subjected to sustained temperature gradients[J]. Canadian Journal of Civil Engineering, 1984, 11 (3): 404-410. doi: 10.1139/l84-061
    [11] 汪剑, 方志. 混凝土箱梁桥的温度场分析[J]. 湖南大学学报: 自然科学版, 2008, 35 (4): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX200804004.htm

    WANG Jian, FANG Zhi. Temperature variation of concrete box girder bridge[J]. Journal of Hunan University: Natural Sciences, 2008, 35 (4): 23-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX200804004.htm
    [12] 王高新, 丁幼亮, 王晓晶, 等. 苏通大桥扁平钢箱梁温度场长期监测与统计分析[J]. 公路交通科技, 2014, 31 (2): 69-73, 120. doi: 10.3969/j.issn.1002-0268.2014.02.012

    WANG Gao-xin, DING You-liang, WANG Xiao-jing, et al. Long-term monitoring and statistical analysis of temperature field of flat steel-box girder of Sutong Bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (2): 69-73, 120. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.02.012
    [13] 孙国晨, 关荣财, 姜英民, 等. 钢-混凝土叠合梁横截面日照温度分布研究[J]. 工程力学, 2006, 23 (11): 122-127. doi: 10.3969/j.issn.1000-4750.2006.11.020

    SUN Guo-chen, GUAN Rong-cai, JIANG Ying-min, et al. Sunshine-induced temperature distribution on cross section of steel-concrete composite beams[J]. Engineering Mechanics, 2006, 23 (11): 122-127. (in Chinese). doi: 10.3969/j.issn.1000-4750.2006.11.020
    [14] HO Duen, LIU Chi-ho. Extreme thermal loadings in highway bridges[J]. Journal of Structural Engineering, 1989, 115 (7): 1681-1696. doi: 10.1061/(ASCE)0733-9445(1989)115:7(1681)
    [15] TONG Man, THAM L G, AU F T K. Extreme thermal loading on steel bridges in tropical region[J]. Journal of Bridge Engineering, 2002, 7 (6): 357-366. doi: 10.1061/(ASCE)1084-0702(2002)7:6(357)
    [16] AU F T K, TONG Man, THAM L G. Design thermal loading for steel bridges in Hong Kong[J]. HKIE Transactions Hong Kong Institution of Engineers, 2001, 8 (2): 1-9.
    [17] LUCAS J M, VIRLOGEUX M, LOUIS C. Temperature in the box girder of the Normandy Bridge[J]. Structural Engineering International, 2005, 15 (3): 156-165. doi: 10.2749/101686605777963044
    [18] LUCAS J M, BERRED A, LOUIS C. Thermal actions on a steel box girder bridge[J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2003, 156 (2): 175-182. doi: 10.1680/stbu.2003.156.2.175
    [19] CHEN Quan. Effects of thermal loads on Texas steel bridges[D]. Austin: University of Texas at Austin, 2008.
    [20] 肖建庄, 宋志文, 赵勇, 等. 基于气象参数的混凝土结构日照温度作用分析[J]. 土木工程学报, 2010, 43 (4): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201004009.htm

    XIAO Jian-zhuang, SONG Zhi-wen, ZHAO Yong, et al. Analysis of solar temperature action for concrete structure based on meteorological parameters. [J]. China Civil Engineering Journal, 2010, 43 (4): 30-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201004009.htm
    [21] 顾斌, 陈志坚, 陈欣迪. 基于气象参数的混凝土箱梁日照温度场仿真分析[J]. 东南大学学报: 自然科学版, 2012, 42 (5): 950-955. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201205029.htm

    GU Bin, CHEN Zhi-jian, CHEN Xin-di. Simulation analysis for solar temperature field of concrete box girder based on meteorological parameters[J]. Journal of Southeast University: Natural Science Edition, 2012, 42 (5): 950-955. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201205029.htm
    [22] 陶翀, 谢旭, 申永刚, 等. 基于概率分析的混凝土箱梁温度梯度模式[J]. 浙江大学学报: 工学版, 2014, 48 (8): 1353-1361. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201408002.htm

    TAO Chong, XIE Xu, SHEN Yong-gang, et al. Study on temperature gradient of concrete box girder based on probability analysis[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (8): 1353-1361. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201408002.htm
    [23] 权磊, 田波, 牛开民, 等. 青藏高原高等级道路路基路面温度变化特征[J]. 交通运输工程学报, 2017, 17 (2): 21-30. http://transport.chd.edu.cn/article/id/201702003

    QUAN Lei, TIAN Bo, NIU Kai-min, et al. Temperature variation properties of pavements and subgrades for highgrade roads on Qinghai-Tibet Plateau[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (2): 21-30. (in Chinese). http://transport.chd.edu.cn/article/id/201702003
    [24] POTGIETER I C, GAMBLE W L. Nonlinear temperature distributions in bridges at different locations in the United States[J]. Precast/Prestressed Concrete Institute Journal, 1989, 34 (4): 80-103.
    [25] 闫雯. 钢管混凝土拱肋截面温度场及温度效应分析[D]. 西安: 长安大学, 2008.

    YAN Wen. Analysis ontemperature field and its effect of concrete filled steel tubular rib section[D]. Xi'an: Chang'an University, 2008. (in Chinese).
    [26] 向学建, 董军, 刘昊苏, 等. 高原冬季环境下桥梁温度场各参数的确定[J]. 公路交通科技, 2012, 29 (3): 58-63, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201203010.htm

    XIANG Xue-jian, DONG Jun, LIU Hao-su, et al. Determination of parameters of temperature field of boxgirder bridge in winter weather of plateau[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (3): 58-63, 85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201203010.htm
    [27] 陈志华, 陈滨滨, 刘红波. 钢结构常用涂料太阳辐射吸收系数试验研究[J]. 建筑结构学报, 2014, 35 (5): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201405014.htm

    CHEN Zhi-hua, CHEN Bin-bin, LIU Hong-bo. Experimental research on solar radiation absorptance of commonly used coatings for steel structures[J]. Journal of Building Structures, 2014, 35 (5): 81-87. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201405014.htm
    [28] 刘文丽, 贡金鑫, 张秀芳. 铺装层对T形梁桥梁竖向温度梯度的影响[J]. 公路交通科技, 2014, 31 (10): 45-50, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201410008.htm

    LIU Wen-li, GONG Jin-xin, ZHANG Xiu-fang. Impact of pavement layer on vertical temperature gradient of T-girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (10): 45-50, 57. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201410008.htm
  • 加载中
图(22) / 表(5)
计量
  • 文章访问数:  723
  • HTML全文浏览量:  171
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-21
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回