留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高原高寒地区H形混凝土桥塔日照温度效应

张宁 刘永健 刘江 季德钧 房建宏 STIEMERS F

张宁, 刘永健, 刘江, 季德钧, 房建宏, STIEMERS F. 高原高寒地区H形混凝土桥塔日照温度效应[J]. 交通运输工程学报, 2017, 17(4): 66-77.
引用本文: 张宁, 刘永健, 刘江, 季德钧, 房建宏, STIEMERS F. 高原高寒地区H形混凝土桥塔日照温度效应[J]. 交通运输工程学报, 2017, 17(4): 66-77.
ZHANG Ning, LIU Yong-jian, LIU Jiang, JI De-jun, FANG Jian-hong, STIEMER S F. Temperature effects of H-shaped concrete pylon in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 66-77.
Citation: ZHANG Ning, LIU Yong-jian, LIU Jiang, JI De-jun, FANG Jian-hong, STIEMER S F. Temperature effects of H-shaped concrete pylon in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 66-77.

高原高寒地区H形混凝土桥塔日照温度效应

基金项目: 

交通运输部建设科技项目 2014 318 363 230

交通运输部建设科技项目 2014 318 802 220

详细信息
    作者简介:

    张宁(1981-), 男, 辽宁大连人, 西北农林科技大学讲师, 工学博士, 从事桥梁工程研究

    通讯作者:

    刘永健(1966-), 男, 江西玉山人, 长安大学教授, 工学博士

  • 中图分类号: U443.38

Temperature effects of H-shaped concrete pylon in arctic-alpine plateau region

More Information
    Author Bio:

    ZHANG Ning(1981-), male, lecturer, PhD, +86-29-82334577, johning@live.cn

    LIU Yong-jian(1966-), male, professor, PhD, +86-29-82334577, lyj.chd@gmail.com

  • 摘要: 分析了混凝土结构温度场边界条件计算方法, 以青海省海黄大桥H形混凝土桥塔为工程背景, 计算了高原高寒地区四季典型气象条件下的桥塔温度场分布, 对比了四季的桥塔表面温差和塔壁局部温差, 确定了桥塔的最不利温度荷载, 建立了桥塔整体有限元模型, 分析了四季桥塔的偏位、竖向应力、横向应力和纵向应力等温度效应。分析结果表明: 桥塔表面温差与桥塔局部温差均在冬季最大, 最大值分别可达11.88℃、20.79℃, 在夏季最小, 最大值分别可达5.15℃、15.25℃; 横桥向和纵桥向桥塔表面温差最大值分别达到9.15℃、11.88℃, 远大于《公路斜拉桥设计细则》 (JTG/T D65-01—2007) 推荐值±5℃; 接近正南方向的塔壁局部温差最大, 沿壁厚方向的温差分布接近指数形式, 冬季和夏季温度衰减系数最大值分别为4.50、5.01, 故冬季桥塔壁板局部温度分布较夏季更不均匀; 桥塔温度效应同样在冬季最大, 1天中最大桥塔偏位超过40mm, 白天桥塔偏位变化值超过15mm, 不利于施工过程中的桥塔偏位监测; 桥塔根部竖向最大拉应力达到2.2MPa, 桥塔根部同样产生较大水平向拉应力, 纵桥向和横桥向最大拉应力分别为1.82、0.82 MPa, 均发生在桥塔内侧, 在与其他作用组合时可能会造成桥塔开裂, 建议在桥塔塔壁内侧布置一定量的钢筋网片来控制裂缝; 在进行高原高寒地区桥塔设计和施工控制时, 应充分考虑温度效应带来的不利影响。

     

  • 图  1  测点8与5′的位置

    Figure  1.  Positions of observation points 8and 5′

    图  2  实测数据与有限元计算结果对比

    Figure  2.  Comparison of test data and FEM calculation results

    图  3  桥塔断面局部坐标系

    Figure  3.  Local coordinate system of pylon cross section

    图  4  春季桥塔太阳辐射强度

    Figure  4.  Solar radiation intensities of pylon in spring

    图  5  夏季桥塔太阳辐射强度

    Figure  5.  Solar radiation intensities of pylon in summer

    图  6  秋季桥塔太阳辐射强度

    Figure  6.  Solar radiation intensities of pylon in autumn

    图  7  冬季桥塔太阳辐射强度

    Figure  7.  Solar radiation intensities of pylon in winter

    图  8  春季桥塔温度曲线

    Figure  8.  Temperature curves of pylon in spring

    图  9  夏季桥塔温度曲线

    Figure  9.  Temperature curves of pylon in summer

    图  10  秋季桥塔温度曲线

    Figure  10.  Temperature curves of pylon in autumn

    图  11  冬季桥塔温度曲线

    Figure  11.  Temperature curves of pylon in winter

    图  12  四季桥塔外表面温差

    Figure  12.  Temperature differences of pylon out-surfaces in 4seasons

    图  13  四季塔壁最大温差(单位: ℃)

    Figure  13.  Maximum temperature differences of pylon wall in 4seasons (unit: ℃)

    图  14  东南面塔壁温度分布

    Figure  14.  Temperature distributions of pylon wall in southeast

    图  15  东北面塔壁温度分布

    Figure  15.  Temperature distributions of pylon wall in northeast

    图  16  西南面塔壁温度分布

    Figure  16.  Temperature distributions of pylon wall in southwest

    图  17  西北面塔壁温度分布

    Figure  17.  Temperature distributions of pylon wall in northwest

    图  18  桥塔有限元模型

    Figure  18.  Finite element model of pylon

    图  19  桥塔温度荷载

    Figure  19.  Temperature loads on pylon

    图  20  四季塔顶偏位

    Figure  20.  Displacements of pylon top in 4seasons

    图  21  四季主塔根部竖向应力

    Figure  21.  Vertical stresses of pylon bottom in 4seasons

    图  22  四季主塔横向最大应力

    Figure  22.  Maximum horizontal stresses of pylon in 4seasons

    图  23  冬季温度应力分布

    Figure  23.  Temperature stresses distributions in winter

    表  1  四季典型气象参数

    Table  1.   Typical meteorological parameters in 4seasons

    下载: 导出CSV

    表  2  材料热工参数

    Table  2.   Thermal parameters of materials

    下载: 导出CSV

    表  3  四季桥塔表面最大温差

    Table  3.   Maximum temperature differences of pylon surfaces in 4seasons

    下载: 导出CSV

    表  4  四季塔壁局部温差参数

    Table  4.   Parameters of local pylon wall temperature difference in 4seasons

    下载: 导出CSV
  • [1] 唐红元. 斜拉桥预应力混凝土索塔关键问题研究[D]. 南京: 东南大学, 2006.

    TANG Hong-yuan. Study on key problems of cable-stayed bridge PC pylon[D]. Nanjing: Southeast University, 2006. (in Chinese).
    [2] FENG Zhong-ren, SHEN Jian, WANG Xiong-jiang. Finite element analysis of thermal stress for cable-stayed bridge tower with cracks[J]. Applied Mechanics and Materials, 2012, 178-181: 2085-2090. doi: 10.4028/www.scientific.net/AMM.178-181.2085
    [3] 任翔, 佟阳, 何青, 等. 薄壁箱形混凝土桥塔温度应力场分析[J]. 广西大学学报: 自然科学版, 2011, 36 (1): 121-127. doi: 10.3969/j.issn.1001-7445.2011.01.019

    REN Xiang, TONG Yang, HE Qing, et al. Thermal stress fields of thin-walled box girder concrete bridge tower[J]. Journal of Guangxi University: Natural Science Edition, 2011, 36 (1): 121-127. (in Chinese). doi: 10.3969/j.issn.1001-7445.2011.01.019
    [4] 任翔, 何青, 佟阳, 等. 混凝土桥塔温度场和空间应力场分析[J]. 郑州大学学报: 工学版, 2011, 32 (2): 62-65. doi: 10.3969/j.issn.1671-6833.2011.02.016

    REN Xiang, HE Qing, TONG Yang, et al. Temperature andstress fields analysis of concrete bridge tower[J]. Journal of Zhengzhou University: Engineering Science, 2011, 32 (2): 62-65. (in Chinese). doi: 10.3969/j.issn.1671-6833.2011.02.016
    [5] 谢尚英. 广州猎德大桥索塔日照温度效应分析[J]. 桥梁建设, 2007 (2): 72-75. doi: 10.3969/j.issn.1003-4722.2007.02.020

    XIE Shang-ying. Analysis of sunshine temperature effect on tower of Liede Bridge in Guangzhou[J]. Bridge Construction, 2007 (2): 72-75. (in Chinese). doi: 10.3969/j.issn.1003-4722.2007.02.020
    [6] 靳敏超, 冯仲仁, 刘吉波, 等. 斜拉桥索塔裂缝的温变特性研究[J]. 公路, 2010 (1): 39-42. doi: 10.3969/j.issn.1002-0268.2010.01.008

    JIN Min-chao, FENG Zhong-ren, LIU Ji-bo, et al. A study on temperature variation characteristics of tower cracks of cable-stayed bridge[J]. Highway, 2010 (1): 39-42. (in Chinese). doi: 10.3969/j.issn.1002-0268.2010.01.008
    [7] 樊启武, 钱永久. 采用间接耦合法分析斜拉桥索塔瞬态温度应力场[J]. 石家庄铁道大学学报: 自然科学版, 2008, 21 (1): 18-22. doi: 10.3969/j.issn.2095-0373.2008.01.004

    FAN Qi-wu, QIAN Yong-jiu. Analysis of transient temperature gradient and thermal stress field of cable-stayed bridge tower by means of indirect coupling[J]. Journal of Shijiazhuang Railway Institute: Natural Science, 2008, 21 (1): 18-22. (in Chinese). doi: 10.3969/j.issn.2095-0373.2008.01.004
    [8] 吕文江, 李永利, 解瑞松, 等. 超高薄壁空心高墩的温度效应研究[J]. 公路交通科技: 应用技术版, 2014 (11): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201411006.htm

    LU Wen-jiang, LI Yong-li, XIE Rui-song, et al. Study on temperature effect of super-high thin-walled hollow high pier[J]. Journal of Highway and Transportation Research and Development: Application and Technology, 2014 (11): 13-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201411006.htm
    [9] 武立群. 混凝土箱梁和空心高墩温度场及温度效应研究[D]. 重庆: 重庆大学, 2012.

    WU Li-qun. Analysis of temperature field and temperature effects for concrete box girder and hollow high pier[D]. Chongqing: Chongqing University, 2012. (in Chinese).
    [10] 代璞, 钱永久. 斜拉桥H形截面混凝土桥塔短期温度特性[J]. 西南交通大学学报, 2014, 49 (1): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201401011.htm

    DAI Pu, QIAN Yong-jiu. Short-term temperature characteristics of H-shaped section concrete pylon of cablestayed bridge[J]. Journal of Southwest Jiaotong University, 2014, 49 (1): 59-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201401011.htm
    [11] 孙增智, 田俊壮, 石强, 等. 承台大体积混凝土里表温差梯度与温差应力有限元模拟[J]. 交通运输工程学报, 2016, 16 (2): 18-26, 36. http://transport.chd.edu.cn/article/id/201602003

    SUN Zeng-zhi, TIAN Jun-zhuang, SHI Qiang, et al. Finite element simulation of inside-outside temperature gradient and thermal stress for abutment mass concrete[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (2): 18-26, 36. (in Chinese). http://transport.chd.edu.cn/article/id/201602003
    [12] 王鹏, 王福敏, 李琦, 等. 环境降温对斜拉桥混凝土主塔早期开裂影响研究[J]. 特种结构, 2010, 27 (2): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG201002023.htm

    WANG Peng, WANG Fu-min, LI Qi, et al. Effect study of environment cooling on early-age cracking in concrete tower of cable-stayed bridge[J]. Special Structures, 2010, 27 (2): 66-70. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG201002023.htm
    [13] ZHANG Hai-long, LI Jun, LIU Chang-guo, et al. Thermal effect of the cable-stayed bridge tower[J]. Wuhan University Journal of Natural Sciences, 2003, 8 (4): 1121-1125.
    [14] DILGER W H, GHALI A, CHAN M, et al. Temperature stresses in composite box girder bridges[J]. Journal of Structural Engineering, 1983, 109 (6): 1460-1478.
    [15] 向学建, 董军, 刘昊苏, 等. 高原冬季环境下桥梁温度场各参数的确定[J]. 公路交通科技, 2012, 29 (3): 58-63, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201203010.htm

    XIANG Xue-jian, DONG Jun, LIU Hao-su, et al. Determination of parameters of temperature field of boxgirder bridge in winter weather of plateau[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (3): 58-63, 85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201203010.htm
    [16] 赵人达, 王永宝. 日照作用下混凝土箱梁温度场边界条件研究[J]. 中国公路学报, 2016, 29 (7): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607009.htm

    ZHAO Ren-da, WANG Yong-bao. Studies on temperature field boundary conditions for concrete box-girder bridges under solar radiation[J]. China Journal of Highway and Transport, 2016, 29 (7): 52-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607009.htm
    [17] LEE Jong-han. Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders[J]. Journal of Bridge Engineering, 2012, 17 (3): 547-556.
    [18] 蒋国富. 大跨径桥梁高墩日照温度效应的研究[D]. 西安: 长安大学, 2005.

    JIANG Guo-fu. The study of sunlight temperature effect for high pier of long-span bridge[D]. Xi'an: Chang'an University, 2005. (in Chinese).
    [19] 吴继臣, 徐刚. 全国主要城市冬季太阳辐射强度的研究[J]. 哈尔滨工业大学学报, 2003, 35 (10): 1236-1239. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200310024.htm

    WU Ji-chen, XU Gang. Major Chinese cities'solar radiant intensities in winter[J]. Journal of Harbin Institute of Technology, 2003, 35 (10): 1236-1239. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200310024.htm
    [20] 周德云, 林元培. 斜拉桥温度影响分析方法[J]. 华东公路, 1990 (4): 42-48.

    ZHOU De-yun, LIN Yuan-pei. Temperature effect analysis method of cable-stayed bridge[J]. East China Highway, 1990 (4): 42-48. (in Chinese).
    [21] KIM S H, PARK S J, WU Jia-xu, et al. Temperature variation in steel box girders of cable-stayed bridges during construction[J]. Journal of Constructional Steel Research, 2015, 112: 80-92.
    [22] 张建荣, 徐向东, 刘文燕. 混凝土表面太阳辐射吸收系数测试研究[J]. 建筑科学, 2006, 22 (1): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX200601009.htm

    ZHANG Jian-rong, XU Xiang-dong, LIU Wen-yan. A test study on the solar radiation absorption coefficient of concrete surface[J]. Building Science, 2006, 22 (1): 42-45. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX200601009.htm
    [23] 顾斌, 陈志坚, 陈欣迪. 基于气象参数的混凝土箱梁日照温度场仿真分析[J]. 东南大学学报: 自然科学版, 2012, 42 (5): 950-955. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201205029.htm

    GU Bin, CHEN Zhi-jian, CHEN Xin-di. Simulation analysis for solar temperature field of concrete box girder based on meteorological parameters[J]. Journal of Southeast University: Natural Science Edition, 2012, 42 (5): 950-955. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201205029.htm
    [24] ROBERTS-WOLLMAN C L, BREEN J E, CAWRSE J. Measurements of thermal gradients and their effects on segmental concrete bridge[J]. Journal of Bridge Engineering, 2002, 7 (3): 166-174.
    [25] 张运波. 薄壁空心高墩的温度效应及其对稳定性影响的研究[D]. 北京: 中国铁道科学研究院, 2011.

    ZHANG Yun-bo. Studies on temperature effects and its influence on stability for high pier with thin-walled hollow sections[D]. Beijing: China Academy of Railway Sciences, 2011. (in Chinese).
    [26] 文永蓬, 徐小峻, 尚慧琳, 等. 考虑热力耦合的轨道车辆车轮建模与仿真[J]. 交通运输工程学报, 2016, 16 (5): 30-41. http://transport.chd.edu.cn/article/id/201605004

    WEN Yong-peng, XU Xiao-jun, SHANG Hui-lin, et al. Modeling and simulation of railway vehicle wheel considering thermo-mechanical coupling[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (5): 30-41. (in Chinese). http://transport.chd.edu.cn/article/id/201605004
  • 加载中
图(23) / 表(4)
计量
  • 文章访问数:  816
  • HTML全文浏览量:  166
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回