留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水润滑可倾瓦推力轴承设计与性能分析

梁兴鑫 严新平 刘正林 欧阳武 金勇 付宜风

梁兴鑫, 严新平, 刘正林, 欧阳武, 金勇, 付宜风. 水润滑可倾瓦推力轴承设计与性能分析[J]. 交通运输工程学报, 2017, 17(4): 89-97.
引用本文: 梁兴鑫, 严新平, 刘正林, 欧阳武, 金勇, 付宜风. 水润滑可倾瓦推力轴承设计与性能分析[J]. 交通运输工程学报, 2017, 17(4): 89-97.
LIANG Xing-xin, YAN Xin-ping, LIU Zheng-lin, OUYANG Wu, JIN Yong, FU Yi-feng. Design and performance analysis of water-lubricated tilting pad thrust bearing[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 89-97.
Citation: LIANG Xing-xin, YAN Xin-ping, LIU Zheng-lin, OUYANG Wu, JIN Yong, FU Yi-feng. Design and performance analysis of water-lubricated tilting pad thrust bearing[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 89-97.

水润滑可倾瓦推力轴承设计与性能分析

基金项目: 

国家自然科学基金项目 51609191

国家自然科学基金项目 51379168

武汉理工大学自主创新研究基金项目 2017IVB043

详细信息
    作者简介:

    梁兴鑫(1985-), 男, 湖北潜江人, 武汉理工大学工学博士研究生, 从事船舶推进系统性能优化研究

    严新平(1959-), 男, 江西莲花人, 武汉理工大学教授, 工学博士

  • 中图分类号: U664.21

Design and performance analysis of water-lubricated tilting pad thrust bearing

More Information
  • 摘要: 针对无轴轮缘驱动推进器对高承载、长寿命、低噪音水润滑推力轴承的需求, 设计了一种阶梯橡胶垫支撑的水润滑可倾瓦推力轴承; 应用流-固双向直接耦合分析方法, 建立了轴承性能计算模型, 研究了橡胶垫基体厚度、阶梯厚度、阶梯厚度比、阶梯宽度比和瓦面材料对推力盘轴向位移、最大水膜压力与水膜厚度的影响。研究结果表明: 在载荷不变的情况下, 推力盘轴向位移和橡胶垫最大应力与橡胶垫厚度和橡胶垫阶梯宽度比成正比; 阶梯厚度比由2/2变成3/6时, 最大水膜压力由1.10 MPa提高到1.32 MPa, 平均水膜厚度由9.4μm增大到14.0μm, 增幅分别为20.00%和48.94%, 平均水膜厚度随最大水膜压力的增大而增大; 橡胶垫阶梯厚度比为2/4, 阶梯宽度比为16/20~20/16时, 轴承综合性能较为理想; 增大推力瓦面材料的弹性模量, 有利于提高轴承的润滑性能, 橡胶垫最佳阶梯宽度比随之增大。

     

  • 图  1  偏置橡胶垫支撑的水润滑可倾瓦推力轴承

    Figure  1.  Eccentrically placed rubber-supported and water-lubricated tilting pad thrust bearing

    图  2  不等厚橡胶垫支撑的水润滑可倾瓦推力轴承

    Figure  2.  Uneven thickness rubber-supported and water-lubricated tilting pad thrust bearing

    图  3  阶梯橡胶垫支撑的水润滑可倾瓦推力轴承

    Figure  3.  Step type rubber-supported and water-lubricated tilting pad thrust bearing

    图  4  流-固耦合求解流程

    Figure  4.  Flowchart for FSI solution

    图  5  可倾瓦推力轴承性能计算流-固耦合模型

    Figure  5.  Performance calculation FSI model of tilting pad thrust bearing

    图  6  水膜压力与网格密度的关系

    Figure  6.  Relatiohship between water film pressure and mesh density

    图  7  求解时间与网格密度关系

    Figure  7.  Relationship between solution time and mesh density

    图  8  水膜压力分布

    Figure  8.  Distribution of water film pressure

    图  9  橡胶垫应力分布

    Figure  9.  Stress distribution of rubber cushion

    图  10  水膜模型

    Figure  10.  Model of water film

    图  11  橡胶垫参数对推力盘轴向位移的影响

    Figure  11.  Influence of rubber cushion's parameter on axial displacement of thrust disc

    图  12  橡胶垫参数对其最大应力的影响关系

    Figure  12.  Influence of rubber cushion's parameter on its maximum stress

    图  13  橡胶垫参数对最大水膜压力的影响

    Figure  13.  Influence of rubber cushion's parameter on maximum water film pressure

    图  14  橡胶垫参数对平均水膜厚度的影响

    Figure  14.  Influence of rubber cushion's parameter on mean water film thickness

    图  15  橡胶垫参数对最小水膜厚度影响(hb/hs=1)

    Figure  15.  Influence of rubber cushion's parameter on minimum water film thickness (hb/hs=1)

    图  16  橡胶垫参数对最小水膜厚度影响(hb/hs≠1)

    Figure  16.  Influence of rubber cushion's parameter on minimum water film thickness (hb/hs≠1)

    图  17  推力盘轴向位移曲线

    Figure  17.  Axial displacement curves of thrust disc

    图  18  最大水膜压力曲线

    Figure  18.  Curves of maximum water film pressure

    图  19  最小水膜厚度曲线

    Figure  19.  Curves of minimum water film thickness

    图  20  平均水膜厚度曲线

    Figure  20.  Curves of mean water film thickness

    表  1  模型参数

    Table  1.   Parameters of model

    下载: 导出CSV
  • [1] DUBAS A J. Robust automated computational fluid dynamics analysis and design optimisation of rim driven thrusters[D]. Southampton: University of Southampton, 2014.
    [2] 谈微中, 严新平, 刘正林, 等. 无轴轮缘推进系统的研究现状与展望[J]. 武汉理工大学学报: 交通科学与工程版, 2015, 39 (3): 601-605. doi: 10.3963/j.issn.2095-3844.2015.03.033

    TAN Wei-zhong, YAN Xin-ping, LIU Zheng-lin, et al. Technology development and prospect of shaftless rim-driven propulsion system[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2015, 39 (3): 601-605. (in Chinese). doi: 10.3963/j.issn.2095-3844.2015.03.033
    [3] LEA M, THOMPSON D, VAN BLARCOM B, et al. Scale model testing of a commercial rim-driven propulsor pod[J]. Journal of Ship Production, 2003, 19 (2): 121-130. doi: 10.5957/jsp.2003.19.2.121
    [4] 吴铸新, 刘正林, 王隽, 等. 水润滑轴承推力瓦块材料摩擦磨损试验研究[J]. 兵工学报, 2011, 32 (1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201101021.htm

    WU Zhu-xin, LIU Zheng-lin, WANG Jun, et al. Research on friction and wear testing of pad materials of waterlubricated thrust bearings[J]. Acta Armamentarii, 2011, 32 (1): 118-123. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201101021.htm
    [5] 张圣东, 刘正林. 船用水润滑橡胶尾轴承静刚度计算模型[J]. 交通运输工程学报, 2013, 13 (5): 61-66. doi: 10.3969/j.issn.1671-1637.2013.05.009

    ZHANG Sheng-dong, LIU Zheng-lin. Static stiffness calculation model of water-lubricated rubber stern tube bearing[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (5): 61-66. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.05.009
    [6] WANG Xiao-lei, KATO K, ADACHI K, et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Tribology International, 2003, 36 (3): 189-197. doi: 10.1016/S0301-679X(02)00145-7
    [7] STANMORE L K, MCALESTER W P, ZEIDAN F Y, et al. Low viscosity, process lubricated thrust bearings for magdrive pumps[J]. World Pumps, 1995 (341): 54-56, 58-61.
    [8] WANG X, YAMAGUCHI A. Characteristics of hydrostatic bearing/seal parts for water hydraulic pumps and motors. Part 1: Experiment and theory[J]. Tribology International, 2002, 35 (7): 425-433. doi: 10.1016/S0301-679X(02)00023-3
    [9] HYUGA H, HIRAO K, JONES M I, et al. Processing and tribological properties of Si3N4/carbon short fiber composites[J]. Journal of the American Ceramic Society, 2010, 86 (7): 1081-1087.
    [10] 何春勇, 刘正林, 吴铸新. 潜水泵水润滑推力轴承润滑性能数值分析[J]. 润滑与密封, 2010, 35 (8): 59-62. doi: 10.3969/j.issn.0254-0150.2010.08.016

    HE Chun-yong, LIU Zheng-lin, WU Zhu-xin. Numerical analysis of lubricating properties of submersible pump water lubricated thrust bearing[J]. Lubrication Engineering, 2010, 35 (8): 59-62. (in Chinese). doi: 10.3969/j.issn.0254-0150.2010.08.016
    [11] GODEC E, VIRONE J, TELLER O. Recent advances in waterlubricated bearings[J]. Hydropower and Dams, 2009 (6): 89-93.
    [12] OUYANG Wu, YUAN Xiao-yang, JIA Qian. Analysis of tilting pad thrust bearing static instability and lubrication performance under the bistability[J]. Industrial Lubrication and Tribology, 2014, 66 (5): 584-592. doi: 10.1108/ILT-08-2012-0069
    [13] GERASIMOV V S, NIKIFOROV S A, PAUTOV Y M, et al. Development of high-load water-lubricated radial-axial bearings for electric-pump units in the first loop of a nuclear power plant[J]. Atomic Energy, 2000, 89 (6): 1027-1030. doi: 10.1023/A:1011379106266
    [14] LEE S, MLLER M, RATOI-SALAGEAN M, et al. Boundary Lubrication of oxide surfaces by poly (L-lysine) -g-poly (ethylene glycol) (PLL-g-PEG) in aqueous media[J]. Tribology Letters, 2003, 15 (3): 231-239. doi: 10.1023/A:1024861119372
    [15] INOUE K, DEGUCHI K, OKUDE K, et al. Development of the water-lubricated thrust bearing of the hydraulic turbine generator[C]∥IOP. 26th IAHR Symposium on Hydraulic Machinery and Systems. Bristol: IOP, 2012: 19-23.
    [16] 黄滨, 吴军令, 武中德, 等. 双向推力轴承支承结构对润滑性能的影响[J]. 排灌机械工程学报, 2012, 30 (6): 690-694. doi: 10.3969/j.issn.1674-8530.2012.06.014

    HUANG Bin, WU Jun-ling, WU Zhong-de, et al. Effects of support structure on lubricating properties of bi-directional thrust bearings[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30 (6): 690-694. (in Chinese). doi: 10.3969/j.issn.1674-8530.2012.06.014
    [17] 张秀丽, 蒋丹, 尹忠慰, 等. 基于CFD的水润滑斜面推力轴承承载能力分析[J]. 东华大学学报: 自然科学版, 2013, 39 (4): 411-416. doi: 10.3969/j.issn.1671-0444.2013.04.004

    ZHANG Xiu-li, JIANG Dan, YIN Zhong-wei, et al. Load capacity analysis of water lubricated tapered-land thrust bearing based on CFD[J]. Journal of Donghua University: Natural Science, 2013, 39 (4): 411-416. (in Chinese). doi: 10.3969/j.issn.1671-0444.2013.04.004
    [18] 张霞, 王新荣, 王晓霞. 提高水润滑推力轴承承载力方法研究[J]. 中国科技信息, 2010 (12): 175-176. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201012083.htm

    ZHANG Xia, WANG Xin-rong, WANG Xiao-xia. Study on method of improving bearing capacity of water lubricated thrust bearing[J]. China Science and Technology Information, 2010 (12): 175-176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201012083.htm
    [19] 刘宪伟. 面向绿色开采的低粘度介质润滑理论及应用研究[D]. 北京: 中国矿业大学, 2008.

    LIU Xian-wei. Study on the theory and applications of the low viscosity lubricants for green mining[D]. Beijing: China University of Mining and Technology, 2008. (in Chinese).
    [20] KENNEDY G C, HOLT J K. Developing a high efficiency means of propulsion for underwater vehicles[C]∥IEEE. Southcon/95. Conference Record. New York: IEEE, 1995: 352-356.
    [21] HSIEH M F, CHEN J H, YEH Y H, et al. Integrated design and realization of a hub-less rim-driven thruster[C]∥IEEE. The 33rd Annual Conference of the IEEE Industrial Electronics Society. New York: IEEE, 2007: 3033-3038.
    [22] 王焕栋. 关于弹性垫支撑自调节受力推力轴承的研究与应用[J]. 水电站机电技术, 2015, 38 (1): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJD201501002.htm

    WANG Huan-dong. Research and application of self-adjusting forced thrust bearing supported by elastic cushion[J]. Mechanical and Electrical Technique of Hydropower Station, 2015, 38 (1): 5-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDJD201501002.htm
    [23] VAN BEEK A, SEGAL A. Numerical solution for tilted hydrostatic multi-pad thrust bearings of finite length[J]. Tribology International, 1997, 30 (1): 41-46. doi: 10.1016/0301-679X(96)00020-5
    [24] ZHOU Quan, HOU Yu, CHEN Chun-zheng. Dynamic stability experiments of compliant foil thrust bearing with viscoelastic support[J]. Tribology International, 2009, 42 (5): 662-665.
    [25] 王守忠. 弹性橡胶垫推力轴承偏心值的选取[J]. 水电站机电技术, 1993 (3): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJD199303011.htm

    WANG Shou-zhong. The selection of the eccentricity of the elastic rubber pad supported thrust bearing[J]. Mechanical and Electrical Technique of Hydropower Station, 1993 (3): 40-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDJD199303011.htm
    [26] VAN BEEK A, SEGAL A. Rubber supported hydrostatic thrust bearings with rigid bearing surface[J]. Tribology International, 1997, 30 (1): 47-52.
    [27] VAN BEEK A, LEPIC L. Rubber supported hydrostatic thrust bearings with elastic bearing surfaces of infinite length[J]. Wear, 1996, 201 (1/2): 45-50.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  192
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-20
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回