留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微织构表面液滴铺展特性

焦云龙 董磊 刘小君 刘焜

焦云龙, 董磊, 刘小君, 刘焜. 微织构表面液滴铺展特性[J]. 交通运输工程学报, 2017, 17(4): 98-105.
引用本文: 焦云龙, 董磊, 刘小君, 刘焜. 微织构表面液滴铺展特性[J]. 交通运输工程学报, 2017, 17(4): 98-105.
JIAO Yun-long, DONG Lei, LIU Xiao-jun, LIU Kun. Spreading features of droplet on micro-textured surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 98-105.
Citation: JIAO Yun-long, DONG Lei, LIU Xiao-jun, LIU Kun. Spreading features of droplet on micro-textured surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 98-105.

微织构表面液滴铺展特性

基金项目: 

国家自然科学基金项目 51375132

详细信息
    作者简介:

    焦云龙(1990-), 男, 安徽合肥人, 合肥工业大学工学博士研究生, 从事汽车摩擦学研究

    刘焜(1963-), 男, 陕西汉中人, 合肥工业大学教授, 工学博士

  • 中图分类号: U473

Spreading features of droplet on micro-textured surface

More Information
  • 摘要: 以Flow-3D为基础, 对不同微织构表面上液滴的铺展过程进行了动力学仿真, 提出了三相接触线的移动机制, 并用接触线铺展标定律、铺展速度和最终铺展半径评价液滴在微织构表面上的铺展特性。试验结果表明: 液滴在微织构表面和光滑表面上分别满足相应的铺展标定律, 微织构增大了固-液接触面积, 液滴铺展过程获得了额外驱动力, 因而, 铺展速度和最终铺展半径都增大; 在正方形凹坑表面, 最终铺展半径由1.05mm增大到1.30mm, 而在正方形凸起表面, 最终铺展半径达到最大值1.62mm; 相比于微凹坑, 微凸起更有利于液滴的铺展, 由于微凸起的存在, 固-液间接触面积迅速增大, 液滴铺展获得了额外的驱动力, 加上微凸起之间形成的微通道, 三相接触线始终保持连续性特征; 反观微凹坑表面, 虽然固-液间的接触面积增大, 但是三相接触线钉扎在微凹坑内, 随着铺展速度逐渐降低, 液滴最终稳定在平衡位置; 液滴在长方形织构表面上的铺展过程具有各向异性, 平行于微织构方向的铺展速度大, 最终铺展半径为1.13mm, 铺展特性较好, 而垂直于微织构方向的铺展速度小, 由于三相接触线的不连续性, 最终铺展半径为0.94mm, 铺展特性较差。

     

  • 图  1  液滴铺展过程

    Figure  1.  Droplet spreading process

    图  2  VOF原理

    Figure  2.  Schematic of VOF

    图  3  数值仿真流程

    Figure  3.  Numerical simulation process

    图  4  网格划分与求解区域

    Figure  4.  Mesh generation and solving area

    图  5  液滴在S1表面上的铺展过程

    Figure  5.  Droplet spreading process on surface S1

    图  6  液滴在S2表面上的铺展过程

    Figure  6.  Droplet spreading process on surface S2

    图  7  液滴在S3表面上的铺展过程

    Figure  7.  Droplet spreading process on surface S3

    图  8  铺展半径曲线

    Figure  8.  Curves of spreading radius

    图  9  S2表面三相接触线的连续性

    Figure  9.  Continuity of triple contact line on surface S2

    图  10  S3表面三相接触线的连续性

    Figure  10.  Continuity of triple contact line on surface S3

    图  11  对数坐标系下铺展半径与时间曲线

    Figure  11.  Curves of spreading radius and time in logarithmic coordinate

    图  12  液滴在S4表面上的铺展过程

    Figure  12.  Droplet spreading process on surface S4

    图  13  液滴在S5表面上的铺展过程

    Figure  13.  Droplet spreading pricess on surface S5

    图  14  S4表面铺展半径与时间曲线

    Figure  14.  Curves of spreading radius and time on surface S4

    表  1  固体表面微织构相关参数

    Table  1.   Micro-texture paraneters of solid surfaces

    下载: 导出CSV
  • [1] PAWLAK Z, URBANIAK W, OLOYEDE A. The relationship between friction and wettability in aqueous environment[J]. Wear, 2011, 270 (9/10): 1745-1749.
    [2] 杨淑燕, 郭峰, 马冲, 等. 固液润湿性对流体动压润滑薄膜的影响[J]. 摩擦学学报, 2010, 30 (2): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201002019.htm

    YANG Shu-yan, GUO Feng, MA Chong, et al. Influences of the liquid/solid wettability on thin hydrodynamic lubrication films[J]. Tribology, 2010, 30 (2): 203-208. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201002019.htm
    [3] 朱海燕, 张翼, 赵怀瑞, 等. 基于边界层控制的高速列车减阻技术[J]. 交通运输工程学报, 2017, 17 (2): 64-72. doi: 10.3969/j.issn.1671-1637.2017.02.007

    ZHU Hai-yan, ZHANG Yi, ZHAO Huai-rui, et al. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (2): 64-72. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.02.007
    [4] 周海超, 梁晨, 杨建, 等. 提升轮胎抗滑水性能的仿生方法[J]. 机械工程学报, 2015, 51 (8): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508018.htm

    ZHOU Hai-chao, LIANG Chen, YANG Jian, et al. Bionic method for improving tire anti-hydroplaning performance[J]. Journal of Mechanical Engineering, 2015, 51 (8): 125-130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508018.htm
    [5] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [6] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28 (8): 988-994. doi: 10.1021/ie50320a024
    [7] CASSIE A B D, BAXTER S. Large contact angles of plant and animal surfaces[J]. Nature, 1945, 155 (3923): 21-22. doi: 10.1038/155021a0
    [8] 程帅, 董云开, 张向军. 规则粗糙固体表面液体浸润性对表观接触角影响的研究[J]. 机械科学与技术, 2007, 26 (7): 822-827. doi: 10.3321/j.issn:1003-8728.2007.07.002

    CHENG Shuai, DONG Yun-kai, ZHANG Xiang-jun. Study of the influence of apparent contactangle on regular rough surface considering liquid wetting properties[J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26 (7): 822-827. (in Chinese). doi: 10.3321/j.issn:1003-8728.2007.07.002
    [9] 杨常卫, 何枫, 郝鹏飞. 微结构疏水表面上液滴的表观接触角[J]. 中国科学: 化学, 2010, 40 (10): 1545-1549. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201010010.htm

    YANG Chang-wei, HE Feng, HAO Peng-fei. The apparent contact angle on the micro-structured hydrophobic surface[J]. Scientia Sinica: Chimica, 2010, 40 (10): 1545-1549. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201010010.htm
    [10] 陈晓玲, 吕田. 粗糙表面液滴表观形态研究[J]. 中国科学: 物理学力学天文学, 2009, 39 (1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200901009.htm

    CHEN Xiao-ling, LU Tian. Study of apparent shape of the droplet on rough surface[J]. Scientia Sinica: Physics, Mechanica and Astronomica, 2009, 39 (1): 58-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200901009.htm
    [11] BLAKE T D. The physics of moving wetting line[J]. Journal of Colloid and Interface Science, 2006, 299 (1): 1-13. doi: 10.1016/j.jcis.2006.03.051
    [12] ORAN A, DAVIS S H, BANKOFF S G. Long-scale evolution of thin liquid films[J]. Reviews of Modern Physics, 1997, 69 (3): 931-980. doi: 10.1103/RevModPhys.69.931
    [13] DE GENNES P G. Wetting: statics and dynamics[J]. Reviews of Modern Physics, 1985, 57 (3): 827-863. doi: 10.1103/RevModPhys.57.827
    [14] LEGENDRE D, MAGLIO M. Comparison between numerical models for the simulation of moving contact lines[J]. Computer and Fluids, 2015, 113: 2-13. doi: 10.1016/j.compfluid.2014.09.018
    [15] BARENBLATT G I, BERETTA E, BERTSCH M. The problem of the spreading of a liquid film along a solid surface: a new mathematical formulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (19): 10024-10030. doi: 10.1073/pnas.94.19.10024
    [16] TANNER L. The spreading of silicone oil drops on horizontal surfaces[J]. Journal of Physics D: Applied Physics, 1979, 83 (9): 1473-1484.
    [17] YUAN Quan-zi, ZHAO Ya-pu. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface[J]. Journal of Fluid Mechanics, 2013, 716 (2): 171-188.
    [18] YUAN Quan-zi, ZHAO Ya-pu. Wetting on flexible hydrophilic pillar-arrays[J]. Scientific Reports, 2013, 3 (6), DOI: 10.1038/srep01944.
    [19] BONN D, EGGERS J, INDEKEU J, et al. Wetting and spreading[J]. Reviews of Modern Physics, 2009, 81 (2): 739-805.
    [20] PUJADO P R, HUH C, SCRIVEN L E. On the attribution of an equation of capillarity to Young and Laplace[J]. Journal of Colloid and Interface Science, 1972, 38 (3): 662-663.
    [21] 焦云龙, 刘小君, 逄明华, 等. 固体表面液滴铺展与润湿接触线的移动分析[J]. 物理学报, 2016, 65 (1): 016801-1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201601040.htm

    JIAO Yun-long, LIU Xiao-jun, PANG Ming-hua, et al. Analyses of droplet spreading and the movement of wetting line on a solid surface[J]. Acta Physica Sinica, 2016, 65 (1): 016801-1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201601040.htm
    [22] KIM S J, MOON M W, LEE K R, et al. Liquid spreading on superhy drophilic micropil lararrays[J]. Journal of Fluid Mechanics, 2011, 680: 477-487.
    [23] SHANAHAN M E R. Simple theory of"stick-slip"wetting hysteresis[J]. Langmuir, 1995, 11 (3): 1041-1043.
    [24] 焦云龙, 刘小君, 刘焜. 离散型织构表面液滴的铺展及其接触线的力学特性分析[J]. 力学学报, 2016, 48 (2): 353-360. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201602011.htm

    JIAO Yun-long, LIU Xiao-jun, LIU Kun. Mechanical analysis of a droplet spreading on the discrete textured surfaces[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48 (2): 353-360. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201602011.htm
    [25] 焦云龙, 刘小君, 逄明华, 等. 液滴平壁铺展过程中的滞后效应及力学机制研究[J]. 应用数学和力学, 2016, 37 (1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201601003.htm

    JIAO Yun-long, LIU Xiao-jun, PANG Ming-hua, et al. Study of contact angle hysteresis at moving contact lines based on CFD simulation and mechanical analysis[J]. Applied Mathematics and Mechanics, 2016, 37 (1): 14-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201601003.htm
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  150
  • PDF下载量:  670
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回