留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑行李的多格子元胞自动机登机模型

任新惠 焦阳 赵嶷飞

任新惠, 焦阳, 赵嶷飞. 考虑行李的多格子元胞自动机登机模型[J]. 交通运输工程学报, 2017, 17(4): 122-129.
引用本文: 任新惠, 焦阳, 赵嶷飞. 考虑行李的多格子元胞自动机登机模型[J]. 交通运输工程学报, 2017, 17(4): 122-129.
REN Xin-hui, JIAO Yang, ZHAO Yi-fei. Multi-grid cellular automata boarding model considering carried baggages[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 122-129.
Citation: REN Xin-hui, JIAO Yang, ZHAO Yi-fei. Multi-grid cellular automata boarding model considering carried baggages[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 122-129.

考虑行李的多格子元胞自动机登机模型

基金项目: 

国家自然科学基金项目 U1433111

国家自然科学基金项目 U1333108

详细信息
    作者简介:

    任新惠(1971-), 女, 陕西西安人, 中国民航大学副教授, 从事航空运输企业运营管理研究

  • 中图分类号: V351.17

Multi-grid cellular automata boarding model considering carried baggages

More Information
    Author Bio:

    REN Xin-hui(1971-), female, associate professor, +86-22-24092464, xinhui9596@sina.com

  • 摘要: 为了精确描述旅客登机过程, 分析了经典的旅客登机模型, 考虑了旅客携带行李占用过道空间与步行速度, 刻画了2种新的过道干扰: 速度干扰和入座干扰, 建立了多格子元胞自动机登机模型, 根据旅客携带行李数量, 提出了多行李优先登机策略。分析结果表明: 当客座率为100%时, 新模型登机时间为1 455s, 干扰次数为6 720, 经典模型登机时间为1 244s, 干扰次数为5 412, 相比于经典登机模型, 新模型模拟了机舱内旅客运动的复杂情况, 元胞尺寸增大, 旅客间相互作用增强, 因此, 登机时间较长, 过道干扰较大, 比较符合实际旅客登机行为; 当客座率为100%时, 采用多行李优先登机策略的登机时间为1 303s, 相比随机登机策略减少了150s, 节省登机时间10.3%, 过道干扰次数为5 686, 相比随机策略减少了808次, 因此, 采用多行李优先登机策略能有效地减小过道干扰, 提高登机效率。

     

  • 图  1  机舱座位模型

    Figure  1.  Cabin seat model

    图  2  Tlnb变化趋势

    Figure  2.  Changing trend of Tl with nb

    图  3  机舱过道

    Figure  3.  Aisles in cabin

    图  4  旅客元胞运动模型

    Figure  4.  Motion model of passenger cell

    图  5  经典模型的旅客登机仿真

    Figure  5.  Boarding simulation of passengers in classic model

    图  6  新模型的旅客登机仿真

    Figure  6.  Boarding simulation of passengers in new model

    图  7  新干扰的变化曲线

    Figure  7.  Changing curves of new interference

    图  8  不同最大速度的登机时间

    Figure  8.  Boarding times at different maximum speeds

    图  9  不同元胞尺寸下的登机时间

    Figure  9.  Boarding times under different cellular sizes

    图  10  不同登机模型下的登机时间对比

    Figure  10.  Comparison of boarding times for different boarding models

    图  11  不同登机模型下的干扰次数对比

    Figure  11.  Comparison of interference numbers for different boarding models

    图  12  不同登机策略下新增干扰次数对比

    Figure  12.  Interference number comparison under different boarding strategies

    图  13  不同登机下策略登机时间对比

    Figure  13.  Boarding time comparison under different boarding strategies

    表  1  行李模型参数

    Table  1.   Luggage model parameters

    下载: 导出CSV
  • [1] BALL M, BARNHART C, DRESNER M, et al. Total delay impact study[R]. Berkeley: UC Berkeley Report, 2010.
    [2] NYQUIST D C, MCFADDEN K L. A study of the airline boarding problem[J]. Journal of Air Transport Management, 2008, 14 (4): 197-204. doi: 10.1016/j.jairtraman.2008.04.004
    [3] MILNE R J, KELLY A R. A new method for boarding passengers onto an airplane[J]. Journal of Air Transport Management, 2014, 34 (1): 93-100.
    [4] VAN LANDEGHEM H, BEUSELINCK A. Reducing passenger boarding time in airplanes: a simulation based approach[J]. European Journal of Operational Research, 2002, 142 (2): 294-308. doi: 10.1016/S0377-2217(01)00294-6
    [5] VAN DEN BRIEL M H L, VILLALOBOS J R, HOGG G L, et al. America West Airlines develops efficient boarding strategies[J]. Interfaces, 2005, 35 (3): 191-201. doi: 10.1287/inte.1050.0135
    [6] STEFFEN J H. Optimal boarding method for airline passengers[J]. Journal of Air Transport Management, 2008, 14 (3): 146-150. doi: 10.1016/j.jairtraman.2008.03.003
    [7] STEFFEN J H, HOTCHKISS J. Experimental test of airplane boarding methods[J]. Journal of Air Transport Management, 2012, 18 (1): 64-67. doi: 10.1016/j.jairtraman.2011.10.003
    [8] FERRARI P, NAGEL K. Robustness of efficient passenger boarding strategies for airplanes[J]. Transportation Research Record, 2005 (1915): 44-54.
    [9] 尚华艳, 陆化普, 彭愚. 基于元胞自动机的乘客登机策略[J]. 清华大学学报: 自然科学版, 2010, 50 (9): 1330-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201009002.htm

    SHANG Hua-yan, LU Hua-pu, PENG Yu. Aircraft boarding strategy based on cellular automata[J]. Journal of Tsinghua University: Science and Technology, 2010, 50 (9): 1330-1333. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201009002.htm
    [10] NOTOMISTA G, SELVAGGIO M, SBRIZZI F, et al. A fast airplane boarding strategy using online seat assignment based on passenger classification[J]. Journal of Air Transport Management, 2016, 53: 140-149. doi: 10.1016/j.jairtraman.2016.02.012
    [11] ZEINEDDINE H. A dynamically optimized aircraft boarding strategy[J]. Journal of Air Transport Management, 2017, 58: 144-151. doi: 10.1016/j.jairtraman.2016.10.010
    [12] TANG Tie-qiao, WU Yong-hong, HUANG Hai-jun, et al. An aircraft boarding model accounting for passengers'individual properties[J]. Transportation Research Part C: Emerging Technologies, 2012, 22: 1-16. doi: 10.1016/j.trc.2011.11.005
    [13] JAEHN F, NEUMANN S. Airplane boarding[J]. European Journal of Operational Research, 2015, 244 (2): 339-359. doi: 10.1016/j.ejor.2014.12.008
    [14] BACHMAT E, BEREND D, SAPIR L, et al. Analysis of airplane boarding times[J]. Operations Research, 2009, 57 (2): 499-513. doi: 10.1287/opre.1080.0630
    [15] QIANG Sheng-jie, JIA Bin, XIE Dong-fan, et al. Reducing airplane boarding time by accounting for passengers'individual properties: a simulation based on cellular automaton[J]. Journal of Air Transport Management, 2014, 40: 42-47. doi: 10.1016/j.jairtraman.2014.05.007
    [16] CHUNG C A. Simulation design approach for the selection of alternative commercial passenger aircraft seating configurations[J]. Journal of Aviation Technology and Engineering, 2012, 2 (1): 100-104. doi: 10.5703/1288284314861
    [17] 冯霞, 张鑫, 陈锋. 飞机过站上客过程持续时间分布[J]. 交通运输工程学报, 2017, 17 (2): 98-105. http://transport.chd.edu.cn/article/id/201702011

    FENG Xia, ZHANG Xin, CHEN Feng. Boarding duration distribution of aircraft turnaround[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (2): 98-105. (in Chinese). http://transport.chd.edu.cn/article/id/201702011
    [18] BAZARGAN M. A linear programming approach for aircraft boarding strategy[J]. European Journal of Operational Research, 2007, 183 (1): 394-411. doi: 10.1016/j.ejor.2006.09.071
    [19] SOOLKI M, MAHDAVI I, MADAVI-AMIRI N, et al. A new linear programming approach and genetic algorithm for solving airline boarding problem[J]. Applied Mathematical Modelling, 2012, 36 (9): 4060-4072. doi: 10.1016/j.apm.2011.11.030
    [20] 柯源. 飞机登机策略分析Ⅰ-离散时间模拟模型[J]. 数学的实践与认识, 2007, 37 (18): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS200718013.htm

    KE Yuan. Analysis of airplane boarding strategiesⅠ-a discrete event simulation model[J]. Mathematics in Practice and Theory, 2007, 37 (18): 85-94. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS200718013.htm
    [21] 任新惠, 唐少勇. 单通道客机登机策略模拟研究[J]. 科学技术与工程, 2015, 15 (1): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201501023.htm

    REN Xin-hui, TANG Shao-yong. The simulation study of single aisle aircraft boarding strategy[J]. Journal of Science Technology and Engineering, 2014, 15 (1): 120-126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201501023.htm
    [22] GIITSIDIS T, SIRAKOULIS G C. Modeling passengers boarding in aircraft using cellular automata[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3 (4): 365-384. doi: 10.1109/JAS.2016.7510076
    [23] TANG Tie-qiao, HUANG Hai-jun, SHANG Hua-yan. A new pedestrian-following model for aircraft boarding and numerical tests[J]. Nonlinear Dynamics, 2012, 67 (1): 437-443. doi: 10.1007/s11071-011-9992-7
    [24] TAJIMA Y, NAGATANI T. Clogging transition of pedestrian flow in T-shaped channel[J]. Physica A: Statistical Mechanics and its Applications, 2002, 303 (1/2): 239-250.
    [25] SONG Wei-guo, XU Xuan, WANG Bing-hong, et al. Simulation of evacuation processes using a multi-grid model for pedestrian dynamics[J]. Physica A: Statistical Mechanics and its Applications, 2006, 363 (2): 492-500.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  571
  • HTML全文浏览量:  158
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-23
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回