-
摘要: 收集了大量的配筋超高性能混凝土(R-UHPC) 梁抗剪承载力的试验数据, 分析了现有抗剪承载力计算方法, 研究了R-UHPC梁的抗剪机理, 考虑了UHPC的抗拉作用, 提出了基于桁架-拱模型的R-UHPC梁抗剪承载力计算方法, 并比较了计算结果与试验结果。比较结果表明: 在现有的计算方法中, 采用基于统计分析方法的承载力计算值与试验值的平均比值为0.92, 比值的标准差为0.23, 比值的相关性系数为0.78, 比值的可靠性系数为0.877, 该方法因回归数据有限, 精度不高; 对于基于一般桁架模型的梁抗剪承载力计算方法, 法国UHPC指南AFGC抗剪承载力计算值与试验值的平均比值为0.90, 比值的标准差为0.18, 比值的相关性系数为0.80, 比值的可靠性系数为0.891, 计算精度较日本UHPC标准JSCE和瑞士标准SIA较高; 在AFGC指南基础上, 考虑了纵筋影响, 抗剪承载力计算值与试验值平均比值为0.93, 比值的标准差为0.23, 比值的相关性系数为0.75, 比值的可靠性系数为0.858, 与AFGC计算结果相比离散性较大; 采用基于桁架-拱模型的抗剪承载力计算方法的抗剪承载力计算值与试验值平均比值为0.76, 比值的标准差为0.26, 比值的相关性系数为0.62, 比值的可靠性系数为0.768, 因直接套用钢筋(普通) 混凝土梁的抗剪承载力计算方法且不计UHPC的抗拉作用, 计算结果过于保守, 且可靠性最差; 采用提出的抗剪承载力计算方法的计算值与试验值的平均比值为0.94, 比值的标准差为0.21, 比值的相关性系数为0.80, 比值的可靠性系数为0.885, 与现有计算方法相比, 本文提出计算方法精度较高, 离散性小。Abstract: A lot of test data of shear bearing capacity concerning reinforced ultra-high performance concrete (R-UHPC) beams were collected, existing calculation methods of shear bearing capacity were analyzed, and the shear bearing mechanism of R-UHPC beam was studied.The tensile strength of UHPC was considered, a calculation method of shear bearing capacity for R-UHPC beam based on truss-arch model was presented, and the calculated result and test result of shearbearing capacity were compared.Comparison result indicates that in the calculation methods at present, based on statistical analysis method, the average ratio of the calculation values to the test values of shear bearing capacity is 0.92, its standard deviation, correlation coefficient and reliability coefficient are 0.23, 0.78 and 0.877, respectively, and the computation accuracy is not high due to the limitation of regression data.For the calculation methods based on the general truss model, the average ratio of the calculation values to the test values of shear bearing capacity with AFGC in French UHPC is 0.90, its standard deviation, correlation coefficient and reliability coefficient are 0.18, 0.80 and 0.891, respectively, and the computation accuracy is higher than the accuracies of Japan UHPC's JSCE and Swiss SIA. When the effect of longitudinal reinforcement is considered based on AFGC, the average ratio of the calculation values to the test values of shear bearing capacity is 0.93, its standard deviation, correlation coefficient and reliability coefficient are 0.23, 0.75 and 0.858, respectively, and the result has larger discreteness than the result of AFGC.For the calculation methods based on the truss-arch model, the average ratio of the calculation values to the test values of shear bearing capacity is 0.76, and its standard deviation, correlation coefficient and reliability coefficient are 0.26, 0.62 and 0.768, respectively.Because the computation methods of shear bearing capacity of reinforced (common) concrete beam are straightly applied and the tensile strength of UHPC is neglected, the result is conservative and most unreliable.For the proposed calculation method of shear bearing capacity, the average ratio of the calculation values to the test values of shear bearing capacity is 0.94, and its standard deviation, correlation coefficient and reliability coefficient are 0.21, 0.80 and 0.885, respectively.Compared with the calculation methods at present, the proposed method has higher precision and less discreteness.
-
表 1 文献[13]的矩形截面梁抗剪承载力试验结果
Table 1. Test result of rectangular beams shear bearing capacities in reference 13
表 2 文献[14]的矩形截面梁抗剪承载力试验结果
Table 2. Test result of rectangular beams shear bearing capacities in reference 14
表 3 文献[15]的矩形截面梁抗剪承载力试验结果
Table 3. Test result of rectangular beams shear bearing capacities in reference 15
表 4 文献[16]的I形截面梁抗剪承载力试验结果
Table 4. Test result of I-shaped beams shear bearing capacities in reference 16
表 5 文献[17]的T形截面梁抗剪承载力试验结果
Table 5. Test result of T-shaped beams shear bearing capacities in reference 17
表 6 R-UHPC梁抗剪承载力计算结果和试验结果之比
Table 6. Ratios of calculation results to test results for shear bearing capacities of R-UHPC beams
-
[1] 管品武, 徐泽晶, 王博. 钢筋混凝土构件抗剪承载力分析方法比较[J]. 世界地震工程, 2002, 18 (3): 95-101. doi: 10.3969/j.issn.1007-6069.2002.03.018GUAN Pin-wu, XU Ze-jing, WANG Bo. Shear capacity anaIysis methods on R. C members[J]. World Earthquake Engineering, 2002, 18 (3): 95-101. (in Chinese). doi: 10.3969/j.issn.1007-6069.2002.03.018 [2] DUGAT J, ROUX N, BERNIER G. Mechanical properties of reactive powder concretes[J]. Materials and Structures, 1996, 29: 233-240. doi: 10.1007/BF02485945 [3] GRAYBEAL B, TANESI J. Durability of an ultrahighperformance concrete[J]. Journal of Materials in Civil Engineering, 2007, 19 (10): 848-854. doi: 10.1061/(ASCE)0899-1561(2007)19:10(848) [4] 曹媛萍. 活性粉末混凝土(RPC) 无腹筋简支梁斜截面承载力研究[D]. 北京: 北京交通大学, 2004.CAO Yuan-ping. Shear bearing capacity study of reactive powder concrete (RPC) beams without shear reinforced[D]. Beijing: Beijing Jiaotong University, 2004. (in Chinese). [5] ZAGON R, MATTHYS S, KISS Z. Shear test on SFRUHPC I-shaped beams with or without web openings[C]//FIB. 4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials. Lausanne: FIB, 2016: 1-7. [6] 陈彬. 预应力RPC梁抗剪性能研究[D]. 长沙: 湖南大学, 2007.CHEN Bin. Study on the shear strength of prestressed RPC girders[D]. Changsha: Hunan University, 2007. (in Chinese). [7] 徐海宾, 邓宗才, 陈春生, 等. 超高性能纤维混凝土梁抗剪性能试验研究[J]. 土木工程学报, 2014, 47 (12): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201412015.htmXU Hai-bin, DENG Zong-cai, CHEN Chun-sheng, et al. Experimental study on shear strength of ultra-high performance fiber reinforced concrete beams[J]. China Civil Engineering Journal, 2014, 47 (12): 91-97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201412015.htm [8] CLADERA A, MARÍA R. Experimental study on highstrength concrete beams failing in shear[J]. Engineering Structures, 2005, 27 (10): 1519-1527. doi: 10.1016/j.engstruct.2005.04.010 [9] YANG S L, MILLARD S G, SOUTSOS M N, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2009, 23 (6): 2291-2298. doi: 10.1016/j.conbuildmat.2008.11.012 [10] FERRIER E, CONFRERE A, MICHEL L, et al. Shear behaviour of new beams made of UHPC concrete and FRP rebar[J]. Composites Part B: Engineering, 2016, 90: 1-13. [11] THIEMICKE J, FEHLING E. Proposed model to predict the shear bearing capacity of UHPC-beams with combined reinforcement[C]//FEHLING E, MIDDENDORF B, THIEMICKE J. 4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials. Kassel: Kassel University Press, 2016: 62-63. [12] 宋亚运, 唐婷, 彭金成, 等. 基于桁架+拱模型的高强钢筋活性粉末混凝土梁抗剪承载力计算方法[C]//《工程力学》编辑部. 第24届全国结构工程学术会议论文集. 北京: 中国力学学会, 2015: 416-422.SONG Ya-yun, TANG Ting, PENG Jin-cheng, et al. Based on the truss+arch model calculation method for shear bearing capacity of high strength reinforced reactive powder concrete beam[C]//Editorial Office of Engineering Mechanics. Proceedings of the 24th National Conference on Structural Engineering. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2015: 416-422. (in Chinese). [13] 邓宗才, 王海忠, 刘少新, 等. 基于修正压力场理论的活性粉末混凝土梁抗剪承载力计算[J]. 河北工业大学学报, 2014, 43 (6): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGB201406006.htmDENG Zong-cai, WANG Hai-zhong, LIU Shao-xin, et al. Shear capacity of RPC beams based on modified pressure field theory[J]. Journal of Hebei University of Technology, 2014, 43 (6): 22-25. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HBGB201406006.htm [14] 金凌志, 周家亮, 李月霞, 等. 高强钢筋活性粉末混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2015, 36 (增2): 277-285. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S2041.htmJIN Ling-zhi, ZHOU Jia-liang, LI Yue-xia, et al. Experimental study on shear bearing capacity of RPC beams with high strength reinforcement[J]. Journal of Building Structures, 2015, 36 (S2): 277-285. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S2041.htm [15] LIM Woo-young, HONG Sung-gul. Shear strength of ultrahigh performance fibre reinforced concrete beams[C]//FEHLING E, MIDDENDORF B, THIEMICKE J. 4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials. Kassel: Kassel University Press, 2016: 56-57. [16] RANDL N, MÉSZÖLY T, HARSÁNYI P. Load bearing behavior of slender UHPC beam members in shear[C]//FEHLING E, MIDDENDORF B, THIEMICKE J. 4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials. Kassel: Kassel University Press, 2016: 58-59. [17] 季文玉, 丁波, 安明喆. 活性粉末混凝土T形梁抗剪试验研究[J]. 中国铁道科学, 2011, 32 (5): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201105008.htmJI Wen-yu, DING Bo, AN Ming-zhe. Experiental study on the shear capacity of reactive powder concrete T-beams[J]. China Railway Science, 2011, 32 (5): 38-42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201105008.htm [18] 刘立新. 钢筋混凝土深梁、短梁和浅梁受剪承载力的统一计算方法[J]. 建筑结构学报, 1995, 16 (4): 13-21, 12. doi: 10.3321/j.issn:1000-6869.1995.04.008LIU Li-xin. An unified calculation method for shear capacity of R. C. deep beams, short beams and shallow beams[J]. Journal of Building Structures, 1995, 16 (4): 13-21, 12. (in Chinese). doi: 10.3321/j.issn:1000-6869.1995.04.008 [19] 史庆轩, 王朋, 王秋维. 桁架-拱模型用于钢筋混凝土梁的受剪承载力计算分析[J]. 土木建筑与环境工程, 2013, 35 (4): 7-12, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201304003.htmSHI Qing-xuan, WANG Peng, WANG Qiu-wei. Shear capacity calculation analysis of reinforced concrete beams based on truss-arch model[J]. Journal of Civil, Architectural and Environmental Engineering, 2013, 35 (4): 7-12, 26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201304003.htm [20] 管品武. 钢筋混凝土框架柱塑性铰区抗剪承载力试验研究及机理分析[D]. 长沙: 湖南大学, 2000.GUAN Pin-wu. Research on seismic shear capacity of columns within yield hinge regions[D]. Changsha: Hunan University, 2000. (in Chinese). [21] 徐艳秋, 高伟. 混凝土软化本构关系研究的发展[J]. 石家庄铁道学院学报, 2000, 13 (2): 34-38. doi: 10.3969/j.issn.2095-0373.2000.02.009XU Yan-qiu, GAO Wei. Advance of softened constitutive laws of concrete[J]. Journal of Shijiazhuang Railway Institute, 2000, 13 (2): 34-38. (in Chinese). doi: 10.3969/j.issn.2095-0373.2000.02.009 [22] 王铁成, 唐谷贻. 日本抗震指南钢筋混凝土构件抗剪强度的计算模型[J]. 建筑结构, 2000, 30 (10): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200010008.htmWANG Tie-cheng, TANG Gu-yi. Calculation model in AIJ structural design guidelines for share strength of reinforced concrete members[J]. Building Structure, 2000, 30 (10): 31-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200010008.htm [23] 邢朋涛, 梁兴文. 基于桁架-拱模型的纤维增强混凝土梁受剪承载力分析[J]. 建筑结构, 2015, 45 (10): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201510014.htmXING Peng-tao, LIANG Xing-wen. Shear capacity analysis of fiber reinforced concrete beams based on truss-arch model[J]. Building Structure, 2015, 45 (10): 56-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201510014.htm [24] VOO Yen-lei, FOSTER S J, GILBERT R I. Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups[J]. Journal of Advanced Concrete Technology, 2006, 4 (1): 123-132. doi: 10.3151/jact.4.123 [25] VOO Yen-lei, POON W K, FOSTER S J. Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups[J]. Journal of Structural Engineering, 2010, 136 (11): 1393-1400. doi: 10.1061/(ASCE)ST.1943-541X.0000234