留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT图像的集料三维棱角性计算方法

崔喆 张生瑞

崔喆, 张生瑞. 基于CT图像的集料三维棱角性计算方法[J]. 交通运输工程学报, 2017, 17(5): 39-49.
引用本文: 崔喆, 张生瑞. 基于CT图像的集料三维棱角性计算方法[J]. 交通运输工程学报, 2017, 17(5): 39-49.
CUI Zhe, ZHANG Sheng-rui. Computational method of 3D aggregate angularity based on CT images[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 39-49.
Citation: CUI Zhe, ZHANG Sheng-rui. Computational method of 3D aggregate angularity based on CT images[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 39-49.

基于CT图像的集料三维棱角性计算方法

基金项目: 

国家自然科学基金项目 51378071

详细信息
    作者简介:

    崔喆(1978-), 男, 陕西西安人, 陕西省交通规划设计研究院高级工程师, 长安大学工学博士研究生, 从事路面材料与交通安全研究

    张生瑞(1961-), 男, 陕西榆林人, 长安大学教授, 工学博士

  • 中图分类号: U414.11

Computational method of 3D aggregate angularity based on CT images

More Information
  • 摘要: 为了提高集料棱角性评价的准确性, 提出了集料三维棱角性计算方法; 基于CT技术和三维重建技术, 对集料的CT图像进行增强和锐化滤镜处理, 以突显沥青混合料中的集料; 对增强后的CT图像进行灰度阈值计算与灰度划分, 采用MIMICS重构了马歇尔试件中集料的三维模型; 提出了集料粗糙度与球形度的评价指标, 依据集料三维模型评价了集料棱角性, 并分析了三维模型重建的影响因素。计算结果表明: 在AC-16马歇尔试件中, 集料、沥青和孔隙的灰度分别为101.32~170.14、4.32~101.32和0~4.32, 因此, 采用图像增强和锐化滤镜处理可以突显CT图像中的集料, 增强集料三维重建的准确性; 采用2pixels×2pixels、3pixels×3pixels锐化滤镜计算球形度标准差为0.000 7, 而采用5pixels×5pixels、6pixels×6pixels、7pixels×7pixels锐化滤镜计算得到的球形度标准差为0.042 3, 因此, 应当采用2pixels×2pixels或3pixels×3pixels锐化滤镜处理CT图像, 以确保球形度计算结果波动小; 采用50、70个·mm-3采样点密度计算粗糙度的标准差为0.001 6, 而采用5、15、25个·mm-3采样点密度计算粗糙度的标准差为0.034 9, 因此, 应当采用50~70个·mm-3采样点密度来保证集料三维模型精确地反映集料的真实状态; 采用5个CT截面图像计算的二维球形度和粗糙度的标准差为0.012 1~0.048 2, 存在较大变异性和偏差, 而采用基于三维集料模型的粗糙度计算方法得到集料15的粗糙度分别为0.991 2、1.032 1、0.974 2、1.075 1、1.043 2, 集料1~5的平均二维粗糙度分别为0.994 1、1.023 9、0.988 3、1.097 5、1.060 8, 两者基本一致。可见, 基于三维集料模型的粗糙度和球形度计算方法充分考虑了集料的棱角性, 计算结果不受CT截面的影响, 计算结果不存在变异和偏差。

     

  • 图  1  试件

    Figure  1.  Samples

    图  2  工业CT

    Figure  2.  Industrial CT

    图  3  原始CT图像

    Figure  3.  Original CT images

    图  4  增强后的CT图像

    Figure  4.  Enhanced CT images

    图  5  CT图像灰度分布

    Figure  5.  Grey distribution of CT image

    图  6  三维模型重建过程

    Figure  6.  Remodeling process of 3D model

    图  7  滤镜尺寸对球形度计算结果的影响

    Figure  7.  Influences of filter sizes on computation results of sphericity degrees

    图  8  滤镜尺寸对粗糙度计算结果的影响

    Figure  8.  Influences of filter sizes on computation results of roughness degrees

    图  9  集料

    Figure  9.  Aggregates

    图  10  锐化滤镜处理后的图像

    Figure  10.  Images processed by sharpen fillters

    图  11  采样点密度对球形度计算结果的影响

    Figure  11.  Influences of sample point densities on computation results of sphericity degrees

    图  12  采样点密度对粗糙度计算结果的影响

    Figure  12.  Influences of sample point densities on computation results of roughness degrees

    图  13  集料1 CT图像和三维模型

    Figure  13.  CT images and 3D model of aggregate 1

    图  14  集料2 CT图像和三维模型

    Figure  14.  CT images and 3D model of aggregate 2

    图  16  集料4 CT图像和三维模型

    Figure  16.  CT images and 3D model of aggregate 4

    图  15  集料3 CT图像和三维模型

    Figure  15.  CT images and 3D model of aggregate 3

    图  17  集料5 CT图像和三维模型

    Figure  17.  CT images and 3D model of aggregate 5

    表  1  AC-16沥青混凝土配合比

    Table  1.   AC-16 asphalt concrete graduations

    下载: 导出CSV

    表  2  CT参数

    Table  2.   CT parameters

    下载: 导出CSV

    表  3  不同材料的灰度阈值

    Table  3.   Gray thresholds of different materials

    下载: 导出CSV

    表  4  计算结果对比

    Table  4.   Comparison of computation results

    下载: 导出CSV
  • [1] KUTAY M E, OZTURK H I, ABBAS A R, et al. Comparison of 2Dand 3Dimage-based aggregate morphological indices[J]. International Journal of Pavement Engineering, 2011, 12 (4): 421-431. doi: 10.1080/10298436.2011.575137
    [2] TUTUMLUER E, PAN Tong-yan. Aggregate morphology affecting strength and permanent deformation behavior of unbound aggregate materials[J]. Journal of Materials in Civil Engineering, 2008, 20 (9): 617-627. doi: 10.1061/(ASCE)0899-1561(2008)20:9(617)
    [3] HU Li-qun, YUN Di, LIU Zhuang-zhuang, et al. Effect of three-dimensional macrotexture characteristics on dynamic frictional coefficient of asphalt pavement surface[J]. Construction and Building Materials, 2016, 126: 720-729. doi: 10.1016/j.conbuildmat.2016.09.088
    [4] ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, et al. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography[J]. Science of the Total Environment, 2016, 573: 155-163. doi: 10.1016/j.scitotenv.2016.08.108
    [5] 闵永智, 殷超, 党建武, 等. 基于图像色相值突变特征的钢轨区域快速识别方法[J]. 交通运输工程学报, 2016, 16 (1): 46-54. doi: 10.3969/j.issn.1671-1637.2016.01.006

    MIN Yong-zhi, YIN Chao, DANG Jian-wu, et al. Fast recognition method of rail region based on hue value mutation feature of image[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (1): 46-54. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.01.006
    [6] TONG Zheng, GAO J, ZHANG Hai-tao. Innovation for evaluating aggregate angularity based upon 3Dconvolutional neural network[J]. Construction and Building Materials, 2017, 155: 919-929. doi: 10.1016/j.conbuildmat.2017.08.129
    [7] RAJAN B, SINGH D. Understanding influence of crushers on shape characteristics of fine aggregates based on digital image and conventional techniques[J]. Construction and Building Materials, 2017, 150: 833-843. doi: 10.1016/j.conbuildmat.2017.06.058
    [8] RAVANSHAD A, ROQUE R, TEBALDI G, et al. Evaluation of two-dimensional gray-scale images for microtexture analysis of aggregate surface[J]. Journal of Materials in Civil Engineering, 2016, 28 (8): 1-9.
    [9] HAN Jian-den, LIU Wei-qing, WANG Shu-guang et al. Effects of crack and ITZ and aggregate on carbonation penetration based on 3D micro X-ray CT microstructure evolution[J]. Construction and Building Materials, 2016, 128: 256-271. doi: 10.1016/j.conbuildmat.2016.10.062
    [10] CHUNG Sang-yeop, HAN Tong-Seok, YUN Tae-sup, et al. Evaluation of the anisotropy of the void distribution and the stiffness of lightweight aggregates using CT imaging[J]. Construction and Building Materials, 2013, 48: 998-1008. doi: 10.1016/j.conbuildmat.2013.07.082
    [11] ZHAO Guo-tang, SHE Wei, YANG Guo-tao, et al. Mechanism of cement on the performance of cement stabilized aggregate for high speed railway roadbed[J]. Construction and Building Materials, 2017, 144, 347-356. doi: 10.1016/j.conbuildmat.2017.03.194
    [12] GARBOUT A, MUNKHOLM L J, HANSEN S B. Temporal dynamics for soil aggregates determined using X-ray CT scanning[J]. Geoderma, 2013, 204-205: 15-22. doi: 10.1016/j.geoderma.2013.04.004
    [13] CHEN Si-yu, YANG X, YOU Zhan-ping, et al. Innovation of aggregate angularity characterization using gradient approach based upon the traditional and modified Sobel operation[J]. Construction and Building Materials, 2016, 120: 442-449. doi: 10.1016/j.conbuildmat.2016.05.120
    [14] TAFESSE S, ROBISON FERNLUND J M, SUN Wen-juan, et al. Evaluation of image analysis methods used for quantification of particle angularity[J]. Sedimentology, 2013, 60 (4): 1100-1110. doi: 10.1111/j.1365-3091.2012.01367.x
    [15] 汪海年, 卜胤, 周洋, 等. 基于X-Ray CT技术的沥青混合料扫描影响因素及其优化研究[J]. 公路交通科技, 2014, 31 (11): 9-15. doi: 10.3969/j.issn.1002-0268.2014.11.002

    WANG Hai-nian, BU Yin, ZHOU Yang, et al. Research on influencing factors and its optimization of scanning asphalt mixture based on X-ray CT technology[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (11): 9-15. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.11.002
    [16] 唐伯明, 郭鹏, 肖巧林, 等. 沥青混凝土再生集料的棱角性分析[J]. 中国公路学报, 2015, 28 (1), 24-29. doi: 10.3969/j.issn.1001-7372.2015.01.004

    TANG Bo-ming, GUO Peng, XIAO Qiao-lin, et al. Analysis of angularity of asphalt concrete recycled aggregate[J]. China Journal of Highway and Transport, 2015, 28 (1): 24-29. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.01.004
    [17] MASAD E, OLCOTT D, WHITE T, et al. Correlation of fine aggregate imaging shape indices with asphalt mixture performance[J]. Transportation Research Record, 2001 (1757): 148-156.
    [18] JU Yang, WANG Li, XIE He-ping, et al. Visualization of the three-dimensional structure and stress field of aggregated concrete materials through 3D printing and frozen-stress techniques[J]. Construction and Building Materials, 2017, 143: 121-137. doi: 10.1016/j.conbuildmat.2017.03.102
    [19] 郭乃胜, 尤占平, 谭忆秋, 等. 考虑均匀性的沥青混合料最佳沥青用量确定方法[J]. 交通运输工程学报, 2017, 17 (1): 1-10. doi: 10.3969/j.issn.1671-1637.2017.01.001

    GUO Nai-sheng, YOU Zhan-ping, TAN Yi-qiu, et al. Determination method of optimum asphalt content in asphalt mixture under considering homogeneity[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (1): 1-10. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.01.001
    [20] 马天寿, 陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发, 2014, 41 (2): 227-233. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402015.htm

    MA Tian-shou, CHEN Ping. Study of meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41 (2): 227-233. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402015.htm
    [21] 江洎洧, 项伟, 张雪杨. 基于CT扫描和仿真试验研究黄土坡滑坡原状滑带土力学参数[J]. 岩石力学与工程学报, 2011, 30 (5): 1025-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105021.htm

    JIANG Ji-wei, XIANG Wei, ZHANG Xue-yang. Research on mechanical parameters of intact sliding zone soils of Huangtupo landside based on CT scanning and simulation tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (5): 1025-1033. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105021.htm
    [22] 金灿, 王鑫磊, 刘凯, 等. 基于CT图像的沥青混合料细观建模及数值仿真研究进展[J]. 公路, 2016 (9): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201609056.htm

    JIN Can, WANG Xin-lei, LIU Kai, et al. Mesoscopic modeling of asphalt mixture and numerical simulation research progress based on CT images[J]. Highway, 2016 (9): 232-239. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201609056.htm
    [23] 冯杰, 于纪玉. 利用CT扫描技术确定土壤大孔隙分形维数[J]. 灌溉排水学报, 2005, 24 (4): 26-28, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200504006.htm

    FENG Jie, YU Ji-yu. Determination fractal dimension of soil macropore using computed tomography[J]. Journal of Irrigation and Drainage, 2005, 24 (4): 26-28, 40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200504006.htm
    [24] GAO Jie, WANG Zhen-jun, ZHANG Ting, et al. Dispersion of carbon fibers in cement-based composites with different mixing methods[J]. Construction and Building Materials, 2017, 134: 220-227. doi: 10.1016/j.conbuildmat.2016.12.047
    [25] 汪海年, 郝培文, 肖庆一, 等. 粗集料棱角性的图像评价方法[J]. 东南大学学报: 自然科学版, 2008, 38 (4): 637-641. doi: 10.3321/j.issn:1001-0505.2008.04.018

    WANG Hai-nian, HAO Pei-wen, XIAO Qing-yi, et al. Digital image evaluation method for angularity of coarse aggregates[J]. Journal of Southeast University: Natural Science Edition, 2008, 38 (4): 637-641. (in Chinese). doi: 10.3321/j.issn:1001-0505.2008.04.018
    [26] 李嘉, 林辉. 基于数字图像处理的粗集料棱角性量化研究[J]. 公路交通科技, 2008, 25 (7): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200807005.htm

    LI Jia, LIN Hui. Quantification research of coarse aggregate angularity based on digital image processing[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (7): 27-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200807005.htm
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  194
  • PDF下载量:  484
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-08
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回