Properties of fireproofing coating with dirt resistance and water resistance on tunnel surface
-
摘要: 为了提高隧道表层防火涂料的抗污性和耐水性, 选用水性环氧树脂作为成膜剂, 有机硅烷、纳米二氧化硅和纳米二氧化钛作为抗污剂, 水镁石纤维作为无机阻燃剂, 聚磷酸铵(APP) /三聚氰胺(MEL) /季戊四醇(PER) 作为有机阻燃体系, 用热分析法确定了有机阻燃体系各组分的合适比例, 通过耐火试验、热重分析、抗黏污试验与耐水性试验, 分析了纳米二氧化硅、纳米二氧化钛、有机硅烷对涂料抗污性的影响, 经过配方的筛选与优化试验, 综合耐火极限测试和微观分析结果, 开发出抗污耐水性优良的新型多功能防火涂料。分析结果表明: APP、PER和MEL的质量比为2∶1∶1时, PER在APP的催化作用下, 环氧树脂成炭温度峰值由331℃降至277℃, 270℃~800℃范围内环氧树脂残炭率提高约10%;APP-PER的成炭温度峰值比MEL的分解温度低约66℃, 比环氧树脂的成炭温度峰值低约100℃, 有利于形成隔热效果较好的膨胀炭质层; APP、PER与MEL作为阻燃体系时, 加入5%有机硅烷或加入3%纳米二氧化硅和5%纳米二氧化钛, 涂料的耐火时间分别为60min或80min, 当同时加入定量的有机硅烷、纳米二氧化硅和纳米二氧化钛时, 涂料的耐火时间可延长至100min, 再加入10%锡酸锌时, 涂料的耐火时间可进一步延长至120min, 表现出组分间显著的协同防火效应; 最终优选的膨胀型防火涂料配方为: 水性环氧树脂、有机硅烷、阻燃复合剂、固化剂、复合纳米粉、锡酸锌的质量比为40∶5∶33∶4∶8∶10, 该防火涂料耐污性水平为1级, 耐火极限时间超过120min, 浸水800h后无脱落与开裂现象。Abstract: In order to improve the dirt resistance and water resistance of fireproofing coating of tunnel surface, waterborne epoxy resin was taken as adhesive, organic silicon polymer, nanometer silicon dioxide and titanium dioxide were taken as antifoulants, brucite fibre was taken as inorganic flame retardant, ammonium polyphosphate (APP) /melamine (MEL) /pentaerythrotol (PER) was taken as organic flame retardant system, the appropriate proportions of organic flameretardant system's components were determined by thermo analysis, the effects of nanometer silicon dioxide, nanometer titanium dioxide, and organic silicon against on the dirt resistance of fireproofing coating were studied by fire test, thermo-gravimetric analysis, sticky dirty resistance test and water resistance test, and the excellent new-type multifunctional fireproofing coating with dirt resistance and water resistance was developed by screening and optimization experiments of formula, fire endurance test and microscopic analysis.Analysis result shows that when the mass ratio of APP, PER and MEL is 2∶1∶1, the charring temperature peak of epoxy resin decreases from 331 ℃to 277 ℃ under the catalysis of APP on PER, and the carbon residue rate of epoxy resin increases by 10%in the temperature range of 270 ℃-800 ℃.The charring peak temperature of APP-PER is lower about 66 ℃ than the decomposition temperature of MEL and about 100 ℃ than the charring temperature of epoxy resin degree, which is helpful to form expanding carbonaceous layer with good heat insulation effect.When 5% organic silane or 3%nanometer silica and 5% nanometer titanium dioxide is added into the flame retardant system comprised of APP, PER and MEL, the fireproofing time of coating is 60 min or 80 min.When quantitative organic silane, nanometer silicon dioxide and nanometer titanium dioxide are added into the flame retardant system together, the fireproofing time of coating increases to 100 min.Then 10%zinc stannate is added into the system, the fireproofing time of coating increases to 120 min.The increase of fireproofing time shows the significant coordination fireproofing effect of the components.The final formula of optimized intumescent fireproofing coating is that the mass ratio of waterborne epoxy resin, silane, composite flame retardant, curing agent, composite nanometer powder and zinc stannate is 40∶5∶33∶4∶8∶10, its dirt resistance grade is 1, its fireproofing time is more than 120 min, and there are no peeling and cracking phenomena after800 himmersion.
-
Key words:
- tunneling engineering /
- fireproofing coating /
- tunnel surface /
- dirt resistance /
- water resistance /
- epoxy resin
-
表 1 改性材料的选择
Table 1. Selection of modified materials
表 2 涂料抗污性评定等级
Table 2. Dirt resistance classifications of coating
表 3 聚磷酸铵对聚磷酸铵-季戊四醇-三聚氰胺涂料防火性能的影响
Table 3. Effects of APP on fireproofing performances of APP-PER-MEL coating
表 4 季戊四醇和三聚氰胺对聚磷酸铵-季戊四醇-三聚氰胺涂料防火性能的影响
Table 4. Effects of PER and MEL on fireproofing performances of APP-PER-MEL coating
表 5 改性前聚磷酸铵-季戊四醇-三聚氰胺涂料的技术性能
Table 5. Technical performances of APP-PER-MEL coating before modification
表 6 改性材料掺量方案
Table 6. Dosage plans of modified materials
表 7 膨胀型隧道防火涂料配方
Table 7. Formula of intumescent fireproofing coating for tunnel
表 8 膨胀型隧道防火涂料性能
Table 8. Performances of intumescent fireproofing coating for tunnel
-
[1] 何世家. 隧道防火涂料的研制[J]. 新型建筑材料, 2002 (9): 30-31. doi: 10.3969/j.issn.1001-702X.2002.09.012HE Shi-jia. Development of tunnel fireproof coatings[J]. New Building Materials, 2002 (9): 30-31. (in Chinese). doi: 10.3969/j.issn.1001-702X.2002.09.012 [2] 张硕生, 张庆明, 毛朝君. 隧道防火保护的现状及发展趋势[J]. 消防技术与产品信息, 2003 (7): 6-9. doi: 10.3969/j.issn.1002-784X.2003.07.002ZHANG Shuo-sheng, ZHANG Qing-ming, MAO Chao-jun. Present situation and development trend of tunnel fire protection[J]. Fire Technique and Products Information, 2003 (7): 6-9. (in Chinese). doi: 10.3969/j.issn.1002-784X.2003.07.002 [3] 何世家. 钢筋混凝土耐火特性和隧道砌体用防火涂料[J]. 涂料工业, 2002, 32 (9): 11-13, 46. doi: 10.3969/j.issn.0253-4312.2002.09.005HE Shi-jia. Fire resistant characteristics of ferroconcrete and fire-retardant coatings for tunnel linings[J]. Paint and Coatings Industry, 2002, 32 (9): 11-13, 46. (in Chinese). doi: 10.3969/j.issn.0253-4312.2002.09.005 [4] 毛朝君. 环保型隧道防火涂料的研究[J]. 涂料工业, 2003, 33 (5): 40-42. doi: 10.3969/j.issn.0253-4312.2003.05.016MAO Chao-jun. Study on environment friendly fire retardant coating of tunnel[J]. Paint and Coatings Industry, 2003, 33 (5): 40-42. (in Chinese). doi: 10.3969/j.issn.0253-4312.2003.05.016 [5] 程小伟, 姚亚东, 尹光福, 等. 隧道防火涂料配方设计和性能研究[J]. 施工技术, 2005, 34 (11): 73-75. doi: 10.3969/j.issn.1002-8498.2005.11.030CHENG Xiao-wei, YAO Ya-dong, YIN Guang-fu, et al. Formulation design and capability research of fire retardant coating for tunnels[J]. Construction Technology, 2005, 34 (11): 73-75. (in Chinese). doi: 10.3969/j.issn.1002-8498.2005.11.030 [6] 陈夙, 刘军辉, 杨力, 等. 复配型隧道防火涂料的研究[J]. 新型建筑材料, 2010 (1): 84-86. doi: 10.3969/j.issn.1001-702X.2010.01.024CHEN Su, LIU Jun-hui, YANG Li, et al. Research on compound fireproof coating for tunnel[J]. New Building Materials, 2010 (1): 84-86. (in Chinese). doi: 10.3969/j.issn.1001-702X.2010.01.024 [7] JIMENEZ M, DUQUESNE S, BOURBIGOT S. Characterization of the performance of an intumescent fire protective coating[J]. Surface and Coatings Technology, 2006, 201 (3/4): 979-987. [8] CHOU Chuen-shii, LIN Sheau-horng, WANG Chin-i, et al. A hybrid intumescent fire retardant coating from cake-and eggshell-type IFRC[J]. Powder Technology, 2010, 198 (1): 149-156. doi: 10.1016/j.powtec.2009.11.004 [9] WANG Zhen-yu, HAN En-hou, KE Wei. Influence of nanoLDHs on char formation and fire-resistant properties of flame-retardant coating[J]. Progress in Organic Coatings, 2005, 53 (1): 29-37. doi: 10.1016/j.porgcoat.2005.01.004 [10] 覃文清, 李风. 膨胀型防火涂料膨胀发泡层质量对涂料防火性能的影响[J]. 涂料工业, 2003, 33 (6): 12-14. doi: 10.3969/j.issn.0253-4312.2003.06.005QIN Wen-qing, LI Feng. Effect of expanded foam layer quality of intumescence fire-retardant coatings on fire resistance of coatings[J]. Paint and Coatings Industry, 2003, 33 (6): 12-14. (in Chinese). doi: 10.3969/j.issn.0253-4312.2003.06.005 [11] 张广成, 顾军渭, 董善来, 等. 膨胀型防火涂料的研制及防火机理分析[J]. 材料工程, 2006 (1): 47-52. doi: 10.3969/j.issn.1001-4381.2006.01.012ZHANG Guang-cheng, GU Jun-wei, DONG Shan-lai, et al. Preparation and mechanism analysis of intumescent flame retardant coatings[J]. Journal of Materials Engineering, 2006 (1): 47-52. (in Chinese). doi: 10.3969/j.issn.1001-4381.2006.01.012 [12] BAILEY C. Indicative fire tests to investigate the behaviour of cellular beams protected with intumescent coatings[J]. Fire Safety Journal, 2004, 39 (8): 689-709. doi: 10.1016/j.firesaf.2004.06.007 [13] RANDOUX T, VANOVERVELT J C, VAN DEN BERGEN H, et al. Halogen-free flame retardant radiation curable coatings[J]. Progress in Organic Coatings, 2002, 45 (2/3): 281-289. [14] MORTAIGNE B, BOURBIGOTB S, LE BRASB M, et al. Fire behavior related to the thermal degradation of unsaturated polyesters[J]. Polymer Degradation and Stability, 1999, 64 (3): 443-448. doi: 10.1016/S0141-3910(98)00149-9 [15] WANG Zhen-yu, HAN En-hou, LIU Fu-chuan, et al. Fire and corrosion resistances of intumescent Nano-coating containing Nano-SiO2in salt spray condition[J]. Journal of Materials Science and Technology, 2010, 26 (1): 75-81. doi: 10.1016/S1005-0302(10)60012-6 [16] 郑娟荣, 孙恒虎, 刘轶男. 尾砂的火山灰活性及其快速检测方法研究[J]. 中国矿业大学学报, 2000, 29 (5): 472-475. doi: 10.3321/j.issn:1000-1964.2000.05.007ZHENG Juan-rong, SUN Heng-hu, LIU Yi-nan. Study on volcanic reactivity of tailings and its fast determination method[J]. Journal of China University of Mining and Technology, 2000, 29 (5): 472-475. (in Chinese). doi: 10.3321/j.issn:1000-1964.2000.05.007 [17] 韩向阳. 南京长江隧道管片结构耐火性分析[J]. 铁道工程学报, 2011 (4): 67-70. doi: 10.3969/j.issn.1006-2106.2011.04.013HAN Xiang-yang. Analysis of fire resistance of segment structure of Nanjing Yangtze River Tunnel[J]. Journal of Railway Engineering Society, 2011 (4): 67-70. (in Chinese). doi: 10.3969/j.issn.1006-2106.2011.04.013 [18] VAN JAARSVELD J G S, VAN DEVENTER J S J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers[J]. Industrial and Engineering Chemistry Research, 1999, 38 (10): 3932-3941. doi: 10.1021/ie980804b [19] XU Hua, VAN DEVENTER J S J. The geopolymerisation of alumino-silicate minerals[J]. International Journal of Mineral Processing, 2000, 59 (3): 247-266. doi: 10.1016/S0301-7516(99)00074-5 [20] GRAVIT M, ANTONOV S, NEDRYSHKIN O. Research features of tunnel linings with innovations fireproof panels[J]. Procedia Engineering, 2016, 165: 1651-1657. [21] 晏立宇, 王宁. 抗污涂料在城市混凝土桥梁上的应用[J]. 现代涂料与涂装, 2012, 15 (3): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XDTL201203007.htmYAN Li-yu, WANG Ning. The application of antifouling coatings used on urban concrete bridge[J]. Modern Paint and Finishing, 2012, 15 (3): 17-19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDTL201203007.htm [22] 张超灿, 汤先文, 何东铭, 等. 纳米SiO2对水性外墙涂料耐沾污性能影响研究[J]. 武汉理工大学学报, 2003, 25 (10): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200310003.htmZHANG Chao-can, TANG Xian-wen, HE Dong-ming, et al. The effect of nanosilica on stain-resistance of water-borne paint for exterior wall[J]. Journal of Wuhan University of Technology, 2003, 25 (10): 12-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200310003.htm [23] BARBOSA V F F, MACKENZIE K J D, THAUMATURGO C. Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers[J]. International Journal of Inorganic Materials, 2000, 2 (4): 309-317. [24] 刘宝, 潘立, 高敬, 等. 抗污耐候建筑外墙涂料的研究[J]. 新型建筑材料, 2012 (10): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201210014.htmLIU Bao, PAN Li, GAO Jing, et al. Study on exterior house paint of and stain resistance and weather resistance[J]. New Building Materials, 2012 (10): 50-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201210014.htm [25] AHMAD F, ULLAH S, MOHAMMAD W F, et al. Thermal performance of alumina filler reinforced intumescent fire retardant coating for structural application[J]. IOP Conference Series: Materials Science and Engineering, 2014, 60 (1): 1-9.