留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机车牵引工况下车轮磨耗研究

杨阳 丁军君 李芾 李东宇 李金城

杨阳, 丁军君, 李芾, 李东宇, 李金城. 机车牵引工况下车轮磨耗研究[J]. 交通运输工程学报, 2017, 17(5): 81-89.
引用本文: 杨阳, 丁军君, 李芾, 李东宇, 李金城. 机车牵引工况下车轮磨耗研究[J]. 交通运输工程学报, 2017, 17(5): 81-89.
YANG Yang, DING Jun-jun, LI Fei, LI Dong-yu, LI Jin-cheng. Research on wheel wear under locomotive traction condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 81-89.
Citation: YANG Yang, DING Jun-jun, LI Fei, LI Dong-yu, LI Jin-cheng. Research on wheel wear under locomotive traction condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 81-89.

机车牵引工况下车轮磨耗研究

基金项目: 

国家自然科学基金项目 51305359

中央高校基本科研业务费专项资金项目 2682016CX029

详细信息
    作者简介:

    杨阳(1991-), 男, 山东济南人, 西南交通大学工学博士研究生, 从事车辆动力学研究

    李芾(1956-), 男, 云南昆明人, 西南交通大学教授, 工学博士

  • 中图分类号: U260.331.1

Research on wheel wear under locomotive traction condition

More Information
  • 摘要: 以某正在运行的C0-C0轴式电力机车为研究对象, 考虑了机车传动系统的影响, 基于Archard磨耗模型, 建立了电力机车的车轮磨耗计算模型, 研究了恒速与起动工况下车轮的磨耗, 根据某实际线路计算车轮磨耗, 并与实测数据进行对比, 研究了机车正常运行过程中出现的轮缘非正常磨耗。分析结果表明: 当车辆恒速运行2.6×105 km, 牵引力由40kN增大到120kN和由120kN增大到200kN时, 磨耗分别增加了0.74、1.74mm, 因此, 随着牵引力增大磨耗急剧增加; 机车起动过程中增加牵引力可以获得更大的加速度, 随着牵引力增大, 蠕滑率明显增大, 因此, 增加牵引力可节约运行时间, 但同时会产生更大磨耗; 通过与车轮磨耗实测数据对比, 车轮磨耗计算模型较为准确, 在踏面处仿真计算结果与实测结果具有很好的一致性; 由于车轮磨耗计算模型未考虑材料的塑性流动与道岔的影响, 在轮缘处的仿真结果与实测结果有一定的差异; 降低二位轮对横动量和轨侧润滑能够大幅降低车轮磨耗, 当二位轮对横动量由15mm降低为10mm时, 二位轮对累积磨耗降低了15.4%;轨侧润滑后一~三位轮对最大累积磨耗分别降低了13.40%、21.32%、6.46%。

     

  • 图  1  传动系统拓扑关系

    Figure  1.  Topology relationship of drive system

    图  2  整车动力学模型

    Figure  2.  Whole vehicle dynamics model

    图  3  车轮磨耗演变仿真流程

    Figure  3.  Simulation flow of wheel wear evolution

    图  4  恒速工况车轮磨耗

    Figure  4.  Wheel wears under constant speed condition

    图  5  恒速工况不同牵引力下的蠕滑率曲线

    Figure  5.  Creep rate curves under different traction forces and constant speed condition

    图  6  不同牵引力下的运行速度曲线

    Figure  6.  Running speed curves under different traction forces

    图  7  起动工况车轮磨耗

    Figure  7.  Wheel wears under starting condition

    图  8  起动工况不同牵引力下的蠕滑率曲线

    Figure  8.  Creep rate curves under different traction forces and starting condition

    图  9  线路曲线长度

    Figure  9.  Line curve lengths

    图  10  仿真与实测结果比较

    Figure  10.  Comparison of simulation and measured results

    图  11  实际线路车轮踏面累积磨耗

    Figure  11.  Wheel tread cumulative wears on actual line

    图  12  实际线路车轮磨耗后踏面外型

    Figure  12.  Tread shapes after wheel wear on actual line

    图  13  不同横动量车轮累积磨耗

    Figure  13.  Wheel cumulative wears under different transverse momentums

    图  14  轨侧润滑对车轮累积磨耗的影响

    Figure  14.  Influence of rail-side lubrication on wheel cumulative wear

  • [1] 丁军君, 孙树磊, 李芾, 等. 重载货车车轮磨耗仿真[J]. 交通运输工程学报, 2011, 11 (4): 56-60. http://transport.chd.edu.cn/article/id/201104009

    DING Jun-jun, SUN Shu-lei, LI Fu, et al. Simulation of wheel wear for heavy haul freight car[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (4): 56-60. (in Chinese). http://transport.chd.edu.cn/article/id/201104009
    [2] 谭立成. 长波长直线钢轨交替侧磨和机车轮缘磨耗的形成和防治[J]. 中国铁道科学, 2002, 23 (4): 67-71. doi: 10.3321/j.issn:1001-4632.2002.04.014

    TAN Li-cheng. Long wavelength rail alternative side wear and locomotive flange wear on tangent[J]. China Railway Science, 2002, 23 (4): 67-71. (in Chinese). doi: 10.3321/j.issn:1001-4632.2002.04.014
    [3] 杨阳, 李芾, 张茂松, 等. 槽型轨磨耗演变过程数值模拟[J]. 铁道科学与工程学报, 2016, 13 (8): 1607-1612. doi: 10.3969/j.issn.1672-7029.2016.08.023

    YANG Yang, LI Fu, ZHANG Mao-song, et al. Numerical simulation of groove track wear evolution[J]. Journal of Railway Science and Engineering, 2016, 13 (8): 1607-1612. (in Chinese). doi: 10.3969/j.issn.1672-7029.2016.08.023
    [4] 神圣, 张军, 孙传喜, 等. 磨耗状态下机车车轮与曲线钢轨的接触分析[J]. 铁道学报, 2012, 34 (6): 15-19. doi: 10.3969/j.issn.1001-8360.2012.06.003

    SHEN Sheng, ZHANG Jun, SUN Chuan-xi, et al. Analysis on contact between worn wheel and rail on curve[J]. Journal of the China Railway Society, 2012, 34 (6): 15-19. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.06.003
    [5] 郑箭锋. HXD3C型机车在鹰厦线小半径曲线轮缘磨耗原因分析[J]. 机车电传动, 2013 (3): 94-96. doi: 10.3969/j.issn.1000-128X.2013.03.027

    ZHENG Jian-feng. HXD3Clocomotive in Ying-Xia Line of small radius curve wheel flange wear cause analysis[J]. Electric Drive for Locomotives, 2013 (3): 94-96. (in Chinese). doi: 10.3969/j.issn.1000-128X.2013.03.027
    [6] BRAGHIN F, BRUNI S, RESTA F. Wear of railway wheel profiles: a comparison between experimental results and a mathematical model[J]. Vehicle System Dynamics, 2002, 37 (S1): 478-489.
    [7] ZOBORY I. Prediction of wheel/rail profile wear[J]. Vehicle System Dynamics, 1997, 28 (2/3): 221-259.
    [8] JENDEL T. Prediction of wheel profile wear-comparisons with field measurements[J]. Wear, 2002, 253 (1): 89-99.
    [9] DING Jun-jun, LI Fu, HUANG Yun-hua, et al. Application of the semi-Hertzian method to the prediction of wheel wear in heavy haul freight car[J]. Wear, 2014, 314 (1/2): 104-110.
    [10] TAO V C, 李芾, 丁军君, 等. 基于Zobory模型的机车车轮磨耗研究[J]. 铁道机车车辆, 2015, 35 (3): 6-10. doi: 10.3969/j.issn.1008-7842.2015.03.02

    TAO V C, LI Fu, DING Jun-jun, et al. Research on wheel wear of locomotive based on Zobory's model[J]. Railway Locomotive and Car, 2015, 35 (3): 6-10. (in Chinese). doi: 10.3969/j.issn.1008-7842.2015.03.02
    [11] 罗仁, 曾京, 戴焕云, 等. 高速列车车轮磨耗预测仿真[J]. 摩擦学学报, 2009, 29 (6): 551-558. doi: 10.3321/j.issn:1004-0595.2009.06.011

    LUO Ren, ZENG Jing, DAI Huan-yun, et al. Simulation on wheel wear prediction of high-speed train[J]. Tribology, 2009, 29 (6): 551-558. (in Chinese). doi: 10.3321/j.issn:1004-0595.2009.06.011
    [12] LIU B, MEI T X, BRUNI S. Design and optimisation of wheel-rail profiles for adhesion improvement[J]. Vehicle System Dynamics, 2016, 54 (3): 429-444. doi: 10.1080/00423114.2015.1137958
    [13] WANG W J, WANG H, WANG H Y, et al. Sub-scale simulation and measurement of railroad wheel/rail adhesion under dry and wet conditions[J]. Wear, 2013, 302 (1/2): 1461-1467.
    [14] CARTERF W. On the action of a locomotive driving wheel[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1926, 112 (760): 151-157.
    [15] 林凤涛. 高速列车车轮摩耗及型面优化研究[D]. 北京: 中国铁道科学研究院, 2014.

    LIN Feng-tao. Research on wheel wear and wheel profile optimization of high speed train[D]. Beijing: China Academy of Railway Sciences, 2014. (in Chinese).
    [16] ARCHARD J F, HIRST W. The wear of metals under unlubricated conditions[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1956, 236 (1206): 397-410. doi: 10.1098/rspa.1956.0144
    [17] SAIDOVA A, ORLOVA A. Refining the parameters of Archard's wear model for calculating wear of wheels applied for 25tper axle freight wagons on Russian railways[J]. Vehicle System Dynamics, 2014, 52 (S1): 3-15.
    [18] 李霞, 金学松, 胡东. 车轮摩耗计算模型及其数值方法[J]. 机械工程学报, 2009, 45 (9): 193-200.

    LI Xia, JIN Xue-song, HU Dong. Theoretical model and numerical method of wheel profile wear[J]. Journal of Mechanical Engineering, 2009, 45 (9): 193-200. (in Chinese).
    [19] KALKERJ J. Survey of wheel-rail rolling contact theory[J]. Vehicle System Dynamics, 1979, 8 (4): 317-358. doi: 10.1080/00423117908968610
    [20] KALKERJ J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11 (1): 1-13. doi: 10.1080/00423118208968684
    [21] 李志勇, 文睿, 危韧勇. 基于径向基神经网络的机车牵引能耗计算模型[J]. 铁道学报, 2011, 33 (9): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201109005.htm

    LI Zhi-yong, WEN Rui, WEI Ren-yong. Study on locomotive traction energy consumption calculation based on RBF neural network[J]. Journal of the China Railway Society, 2011, 33 (9): 27-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201109005.htm
    [22] 刘宏友, 王为, 李亨利, 等. 青藏客车轮缘异常磨耗分析[J]. 铁道车辆, 2008, 46 (5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200805002.htm

    LIU Hong-you, WANG Wei, LI Heng-li, et al. Analysis of abnormal wear of wheel flanges for Qingzang passenger cars[J]. Rolling Stock, 2008, 46 (5): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200805002.htm
    [23] 徐军帅, 徐华伟, 姜乃中. HXD3机车轮缘非正常磨耗问题的探讨[J]. 上海铁道科技, 2013 (2): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKJ201302034.htm

    XU Jun-shuai, XU Hua-wei, JIANG Nai-zhong. Discussion on HXD3locomotive wheel flange abnormal wear issues[J]. Shanghai Railway Science and Technology, 2013 (2): 65-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKJ201302034.htm
    [24] 姚汤伟, 陈跃年, 朱建昌. 干式润滑方式在机车轮缘润滑中的应用[J]. 润滑与密封, 2006 (8): 179-180. doi: 10.3969/j.issn.0254-0150.2006.08.055

    YAO Tang-wei, CHEN Yue-nian, ZHU Jian-chang. Application of dry lubrication method in locomotive wheel flange lubrication[J]. Lubrication Engineering, 2006 (8): 179-180. (in Chinese). doi: 10.3969/j.issn.0254-0150.2006.08.055
    [25] OTTE R. 采用轮缘润滑装置降低轨道磨损[J]. 城市轨道交通研究, 2006, 9 (5): 58-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT200605018.htm

    OTTE R. Roller lubrication system is adopted to reduce orbital wear[J]. Urban Mass Transit, 2006, 9 (5): 58-59. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT200605018.htm
    [26] SHEN Z Y, HEDRICK J K. The influence of rail lubrication on freight car wheel/rail wear rates[J]. Vehicle System Dynamics, 1986, 15 (S1): 523-536.
  • 加载中
图(14)
计量
  • 文章访问数:  781
  • HTML全文浏览量:  204
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-02
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回