留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿滑道面飞机轮胎临界滑水速度数值仿真

李岳 蔡靖 宗一鸣

李岳, 蔡靖, 宗一鸣. 湿滑道面飞机轮胎临界滑水速度数值仿真[J]. 交通运输工程学报, 2017, 17(5): 90-101.
引用本文: 李岳, 蔡靖, 宗一鸣. 湿滑道面飞机轮胎临界滑水速度数值仿真[J]. 交通运输工程学报, 2017, 17(5): 90-101.
LI Yue, CAI Jing, ZONG Yi-ming. Numerical simulation of critical hydroplaning speed of aircraft tire under wet pavement condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 90-101.
Citation: LI Yue, CAI Jing, ZONG Yi-ming. Numerical simulation of critical hydroplaning speed of aircraft tire under wet pavement condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 90-101.

湿滑道面飞机轮胎临界滑水速度数值仿真

基金项目: 

国家自然科学基金项目 51508559

天津市科技计划项目 14ZCZDGX00001

中央高校基本科研业务费专项资金项目 3122014Co13

中国民航大学省部级科研机构开放基金项目 KFJJ2014JCGCO7

详细信息
    作者简介:

    李岳(1984-), 男, 天津人, 中国民航大学讲师, 工学博士, 从事机场工程研究

    通讯作者:

    蔡靖(1975-), 女, 河北唐山人, 中国民航大学副教授, 工学博士

  • 中图分类号: V226.8

Numerical simulation of critical hydroplaning speed of aircraft tire under wet pavement condition

More Information
  • 摘要: 采用ABAQUS建立了基于CEL算法的飞机轮胎与积水道面流固耦合分析模型, 推导了轮胎接触面动水压强与道面竖向支撑力表达式, 对比了飞机起飞与着陆过程中的滑行状态, 提出了临界滑水速度的上下限解概念, 校核了轮胎模型静态变形与动态滑水特征, 研究了胎压、胎纹与水膜厚度的影响规律, 分析了轮胎接地面积与动水压强分布。仿真结果表明: 在76.6kN轴载作用下, 轮胎模型接地面积为0.076m2, 轮胎中心竖向变形约为3.27cm, 轮胎临界滑水速度为128.5~222.4km·h-1, 与NASA轮胎滑水试验数据一致, 验证了仿真模型的合理性和适用性; 在胎压为1 140kPa时, 减速冲击条件下飞机轮胎临界滑水速度为163km·h-1, 小于加速冲击时的上限226km·h-1, 轮胎接地面积明显减小, 道面支撑力低于机轮轴载的10%;在450~1 109kPa胎压范围内, 减速冲击时临界滑水速度下限较NASA经验公式计算结果更为保守, 两者相差3070km·h-1; 轮胎纵向沟槽排水可降低轮胎前缘动水压强峰值, 增大轮胎接地面积, 减速冲击时带纹轮胎临界滑水速度较光滑轮胎提高了26.9%~28.8%, 增幅约为加速冲击时的2倍; 当道面水膜厚度由3mm增加至13mm时, 胎压为1 140kPa的飞机轮胎临界滑水速度上下限分别降低了85km·h-1和43km·h-1; 在低胎压、厚水膜与减速冲击条件下, 临界滑水速度下限仅为127km·h-1, 低于常见飞机进近接地速度205~250km·h-1, 因此, 滑水事故风险增加。

     

  • 图  1  轮胎与积水道面相互作用模型

    Figure  1.  Interaction model of tire and wet pavement

    图  2  滑水分析有限元模型

    Figure  2.  FEM of hydroplaning analysis

    图  3  轮胎接地面积曲线

    Figure  3.  Curve of tire contact area

    图  4  轮胎竖向变形曲线

    Figure  4.  Vertical deformation curve of tire

    图  5  流固耦合面特征

    Figure  5.  Feature of fluid-solid coupling interface

    图  6  支撑力曲线

    Figure  6.  Curves of supporting force

    图  7  加速与减速冲击时支撑力曲线

    Figure  7.  Curves of supporting force under accelerating and decelerating impact

    图  8  轮胎接地面特征

    Figure  8.  Tire contact features

    图  9  减速冲击时支撑力曲线

    Figure  9.  Curves of supporting force under deceleration impact

    图  10  临界滑水速度比较

    Figure  10.  Comparison of critical hydroplaning speeds

    图  11  不同胎纹轮胎接地面特征

    Figure  11.  Tire contact features with different tire patterns

    图  12  水膜厚度3mm时轮胎接地面特征

    Figure  12.  Tire contact features when water-film thickness is 3mm

    图  13  水膜厚度5mm时轮胎接地面特征

    Figure  13.  Tire contact features when water-film thickness is 5mm

    图  14  水膜厚度7.66mm时轮胎接地面特征

    Figure  14.  Tire contact features when water-film thickness is 7.66mm

    图  15  水膜厚度10mm时轮胎接地面特征

    Figure  15.  Tire contact features when water-film thickness is 10mm

    图  16  水膜厚度13mm时轮胎接地面特征

    Figure  16.  Tire contact features when water-film thickness is 13mm

    图  17  不同水膜厚度时临界滑水速度曲线

    Figure  17.  Curves of critical hydroplaning speed under different water-film thickness conditions

    表  1  轮胎参数

    Table  1.   Tire parameters

    下载: 导出CSV

    表  2  流体材料参数

    Table  2.   Parameters of fluid material

    下载: 导出CSV

    表  3  临界滑水速度比较

    Table  3.   Comparison of critical hydroplaning speeds km·h-1

    下载: 导出CSV

    表  4  胎纹对轮胎临界滑水速度影响

    Table  4.   Influence of tire pattern on critical hydroplaning speed

    下载: 导出CSV
  • [1] SRIRANGAM S K, ANUPAM K, SCARPAS A, et al. Hydroplaning of rolling tires under different operating conditions[C]//ASCE. Airfield and Highway Pavement2013: Sustainable and Efficient Pavements. Reston: ASCE, 2013: 561-572.
    [2] 霍志勤, 茹毅, 韩松臣. 民航运输航空器着陆阶段偏出跑道事件分析模型[J]. 西南交通大学学报, 2012, 47 (5): 895-900. doi: 10.3969/j.issn.0258-2724.2012.05.026

    HUO Zhi-qin, RU Yi, HAN Song-chen. Analysis model of transport aircraft veering off runway during landing phase[J]. Journal of Southwest Jiaotong University, 2012, 47 (5): 895-900. (in Chinese). doi: 10.3969/j.issn.0258-2724.2012.05.026
    [3] 霍志勤. 中国民航运输航空器偏/冲出跑道统计分析[J]. 中国安全生产科学技术, 2012, 8 (7): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201207029.htm

    HUO Zhi-qin. Statistical analysis on runway excursion of transport aircraft in China[J]. Journal of Safety Science and Technology, 2012, 8 (7): 127-132. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201207029.htm
    [4] 余治国, 李曙林, 朱青云. 机轮动力滑水机理分析[J]. 空军工程大学学报: 自然科学版, 2004, 5 (5): 9-11. doi: 10.3969/j.issn.1009-3516.2004.05.003

    YU Zhi-guo, LI Shu-lin, ZHU Qing-yun. Mechanism analysis of an aircraft tire dynamic hydroplaning[J]. Journal of Air Force Engineering University: Natural Science Edition, 2004, 5 (5): 9-11. (in Chinese). doi: 10.3969/j.issn.1009-3516.2004.05.003
    [5] 谷润平, 王鹏. 基于多元线性回归的湿/污染跑道着陆距离估算[J]. 中国民航大学学报, 2014, 32 (3): 20-22. doi: 10.3969/j.issn.1674-5590.2014.03.005

    GU Run-ping, WANG Peng. Estimation of wet and contaminated runway landing distance based on multiple linear regression[J]. Journal of Civil Aviation University of China, 2014, 32 (3): 20-22. (in Chinese). doi: 10.3969/j.issn.1674-5590.2014.03.005
    [6] 李少波, 张宏超, 孙立军. 动水压力的形成与模拟测量[J]. 同济大学学报: 自然科学版, 2007, 35 (7): 915-918. doi: 10.3321/j.issn:0253-374X.2007.07.011

    LI Shao-bo, ZHANG Hong-chao, SUN Li-jun. Development and simulation measurement of dynamic hydraulic pressure[J]. Journal of Tongji University: Natural Science, 2007, 35 (7): 915-918. (in Chinese). doi: 10.3321/j.issn:0253-374X.2007.07.011
    [7] 季天剑, 高玉峰, 陈荣生. 轿车轮胎动力滑水分析[J]. 交通运输工程学报, 2010, 10 (5): 57-60. doi: 10.3969/j.issn.1671-1637.2010.05.010

    JI Tian-jian, GAO Yu-feng, CHEN Rong-sheng. Dynamic hydroplaning analysis of car tire[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (5): 57-60. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.05.010
    [8] 高俊启, 陈昊, 季天剑, 等. 沥青路面动水压力光纤传感测量研究[J]. 传感器与微系统, 2009, 28 (9): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ200909020.htm

    GAO Jun-qi, CHEN Hao, JI Tian-jian, et al. Study of dynamic hydraulic pressure measurement on asphalt pavement using fiber-optic sensing[J]. Transducer and Microsystem Technologies, 2009, 28 (9): 59-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ200909020.htm
    [9] 吕栋, 胡小弟, 周永莲, 等. 基于五维光纤传感器的沥青路面动水压力测量的研究[J]. 武汉工程大学学报, 2016, 38 (3): 268-272. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201603013.htm

    LU Dong, HU Xiao-di, ZHOU Yong-lian, et al. Measurement of dynamic water pressure of asphalt pavement by fivedimensional optical fiber sensor[J]. Journal of Wuhan Institute of Technology, 2016, 38 (3): 268-272. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201603013.htm
    [10] WRAYG A, EHRLICH I R. A systematic experimental investigation of significant parameters affecting model tire hydroplaning[R]. Hoboken: Stevens Institute of Technology, 1973.
    [11] BROWNE A L. Tire deformation during dynamic hydroplaning[J]. Tire Science and Technology, 1975, 3 (1): 16-28. doi: 10.2346/1.2167192
    [12] WIES B, ROEGER B, MUNDL R. Influence of pattern void on hydroplaning and related target conflicts[J]. Tire Science and Technology, 2009, 37 (3): 187-206. doi: 10.2346/1.3137087
    [13] AGRAWAL S K, HENRY J J. A simple tire deformation model for the transient aspect of hydroplaning[J]. Tire Science and Technology, 1980, 8 (3): 23-36. doi: 10.2346/1.2151019
    [14] HORNE W B, DREHER R C. Phenomena of pneumatic tire hydroplaning[R]. Washington DC: National Aeronautics and Space Administration, 1963.
    [15] SETA E, NAKAJIMA Y, KAMEGAWA T, et al, Hydroplaning analysis by FEM and FVM: effect of tire rolling and tire pattern on hydroplaning[J]. Tire Science and Technology, 2000, 28 (3): 140-156. doi: 10.2346/1.2135997
    [16] CHO J R, KIM K W, YOO W S, et al. Mesh generation considering detailed tread blocks for reliable 3Dtire analysis[J]. Advances in Engineering Software, 2004, 35 (2): 105-113. doi: 10.1016/j.advengsoft.2003.10.002
    [17] CHO J R, KIM K W, JEON D H, et al. Transient dynamic response analysis of 3-D patterned tire rolling over cleat[J]. European Journal of Mechanics A: Solids, 2005, 24 (3): 519-531. doi: 10.1016/j.euromechsol.2005.01.004
    [18] CHO J R, LEE H W, SOHN J S, et al. Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire[J]. European Journal of Mechanics A: Solids, 2006, 25 (6): 914-926. doi: 10.1016/j.euromechsol.2006.02.007
    [19] OH C W, KIM T W, JEONG H Y, et al. Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method[J]. Journal of Mechanical Science and Technology, 2008, 22 (1): 34-40. doi: 10.1007/s12206-007-1004-y
    [20] 赵珍辉, 李子然, 汪洋. 带复杂花纹的轮胎滑水显式动力学分析[J]. 汽车技术, 2010 (4): 34-38. doi: 10.3969/j.issn.1000-3703.2010.04.009

    ZHAO Zhen-hui, LI Zi-ran, WANG Yang. Explicit dynamic analysis of hydroplaning for tire with complex tread pattern[J]. Automobile Technology, 2010 (4): 34-38. (in Chinese). doi: 10.3969/j.issn.1000-3703.2010.04.009
    [21] 臧孟炎, 陈高军, 林银辉. 湿滑路面轮胎制动距离有限元仿真分析[J]. 中国机械工程, 2012, 23 (10): 1246-1251. doi: 10.3969/j.issn.1004-132X.2012.10.024

    ZANG Meng-yan, CHEN Gao-jun, LIN Yin-hui. FEM analysis on wet-road braking distance of tire[J]. China Mechanical Engineering, 2012, 23 (10): 1246-1251. (in Chinese). doi: 10.3969/j.issn.1004-132X.2012.10.024
    [22] SRIRANGAM S K, ANUPAM K, SCARPAS A, et al. Safety aspects of wet asphalt pavement surfaces through field and numerical modeling investigations[J]. Transportation Research Record, 2014 (2446): 37-51.
    [23] ANUPAM K, SRIRANGAM S K, SCARPAS A, et al. Study of cornering maneuvers of a pneumatic tire on asphalt pavement surfaces using the finite element method[J]. Transportation Research Record, 2014 (2457): 129-139.
    [24] FWA T F, ANUPAM K, ONG G P. Relative effectiveness of grooves in tire and pavement in reducing vehicle hydroplaning risk[C]//TRB. TRB 2010 Annual Meeting. Washington DC: TRB, 2009: 1-21.
    [25] PASINDU H R, FWA T F, ONG G P. Computation of aircraft braking distances[J]. Transportation Research Record, 2011 (2214): 126-135.
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  204
  • PDF下载量:  601
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-13
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回