-
摘要: 分析了紧急情况造成的心理压力对地铁站台乘客疏散行为产生的影响, 建立了心理压力与滞留时间、局部密度、危险源距离的数量关系; 研究了心理压力下的疏散期望速度, 建立了修正期望速度模型, 并修正了社会力模型; 针对站台乘客疏散过程, 设计了多智能体感知和决策流程, 建立了基于多智能体技术的疏散仿真模型, 对乘客从接收疏散信号到疏散完成的全过程进行抽象化处理; 运用AnyLogic仿真软件搭建仿真场景, 并将建立的多个模型以接口方式导入仿真软件, 基于北京地铁2号线西直门站台, 研究了乘客的疏散行为。仿真结果表明: 心理压力对疏散时间、疏散速度、乘客密度与绕行距离产生了较大影响, 有心理压力时乘客疏散效率较无心理压力时增大了24.03%, 整体平均疏散时间减少了27.68%, 楼梯区域平均疏散时间减少了36.20%, 衔接区域平均疏散时间减少了22.05%;有心理压力的乘客在楼梯区域的平均疏散速度约为0.226m·s-1, 无心理压力时约为0.351m·s-1; 在衔接区域, 有心理压力的乘客最高聚集密度达8.0人·m-2, 无心理压力时达到9.5人·m-2, 楼梯区域乘客聚集密度最大值均约为3.5人·m-2; 有心理压力的乘客平均绕行距离较无心理压力时增加了96.91%, 乘客运动更加混乱。Abstract: The effects of psychological stress from emergencies on metro platform on the evacuation behaviors of passengers were analyzed. The numerical relationship between psychological stress and retention time, local density, distance of hazard was built.The expected velocity of evacuation under psychological stress was researched, a modified expectation velocity model was developed, and the social force model was modified.Aiming at the evacuation process of passengers on the platform, a multi-agent perception and decision-making flow was designed.An evacuation simulation model based on multi-agent technology was built, and the whole process from the reception of evacuation signals to the evacuation completion for passengers was abstractly dealt with.AnyLogic simulation software was used to build the simulation case, the built models were imported into the simulation software by interface means, and the evacuationbehaviors of passengers were studied based on the Xizhimen Platform in Beijing Metro Line 2.Simulation result shows that the psychological stress has large effect on the evacuation time, evacuation velocity, passenger density and detour distance.The passengers'evacuation efficiency with psychological stress increases by 24.03%than that without psychological stress, the average total evacuation time reduces by 27.68%, and the average evacuation times in stair region and connecting region reduce by 36.20% and 22.05%, respectively.The passengers'average evacuation velocity with psychological stress in stair region is about 0.226 m·s-1, and the velocity without psychological stress is 0.351 m ·s-1.The highest gathering density in connecting region with psychological stress is 8.0 passenger· m-2, while the density is9.5 passenger·m-2 without psychological stress.The highest gathering density in stair region is3.5 passenger·m-2.The detour distance with psychological stress increases by 96.91% than that without psychological stress, and the movement of passengers with psychological stress is more chaotic.
-
Key words:
- urban rail transit /
- metro platform /
- emergency /
- passenger evacuation /
- social force model /
- psychological stress /
- multi-agent
-
表 1 行人心理压力和自由走行速度的关系
Table 1. Relationship between psychological stress and free movement velocity of pedestrian
-
[1] 刘小明, 胡红. 应急交通疏散研究现状与展望[J]. 交通运输工程学报, 2008, 8 (3): 108-115, 121. doi: 10.3321/j.issn:1671-1637.2008.03.023LIU Xiao-ming, HU Hong. Research status and prospect of emergency transportation evacuation[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (3): 108-115, 121. (in Chinese). doi: 10.3321/j.issn:1671-1637.2008.03.023 [2] HOOGENDOORN S P, DAAMEN W. Pedestrian behavior at bottlenecks[J]. Transportation Science, 2005, 39 (2): 147-159. doi: 10.1287/trsc.1040.0102 [3] SEYFRIED A, RUPPRECHT T, PASSON O, et al. New insights into pedestrian flow through bottlenecks[J]. Transportation Science, 2009, 43 (3): 395-406. doi: 10.1287/trsc.1090.0263 [4] HENDERSON L F, LYONS D J. Sexual differences in human crowd motion[J]. Nature, 1972, 240: 353-355. doi: 10.1038/240353a0 [5] YANG L Z, ZHAO D L, LI J, et al. Simulation of the kin behavior in building occupant evacuation based on Cellular Automaton[J]. Building and Environment, 2005, 40 (3): 411-415. doi: 10.1016/j.buildenv.2004.08.005 [6] 李琦, 王明年, 于丽. 长大铁路隧道火灾模式下人员疏散试验研究[J]. 中国铁道科学, 2015, 36 (6): 78-84. doi: 10.3969/j.issn.1001-4632.2015.06.11LI Qi, WANG Ming-nian, YU Li. Experimental study on evacuation under fire mode in long and large railway tunnel[J]. China Railway Sciences, 2015, 36 (6): 78-84. (in Chinese). doi: 10.3969/j.issn.1001-4632.2015.06.11 [7] WANG Xiu-dan, CHEN Shao-kuan, ZHOU Yang-fan, et al. Simulation on passenger evacuation under fire emergency in metro station[C]//IEEE. 2013IEEE International Conference on Intelligent Rail Transportation Proceedings. New York: IEEE, 2013: 259-262. [8] 张树平. 建筑火灾中人的行为反应研究[D]. 西安: 西安建筑科技大学, 2004.ZHANG Shu-ping. Study on human behaviour in building fire[D]. Xi'an: Xi'an University of Architecture and Technology, 2004. (in Chinese). [9] SHIELDS T J, PROULX G. The science of human behavior: past research endeavours, current developments and fashioning a research agenda[C]//CURTAT M. Proceedings of the 6th International Symposium on Fire Safety Science. Amsterdam: Elsevier, 2000: 95-114. [10] HELBING D, BUZNA L, JOHANSSON A, et al. Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions[J]. Transportation Science, 2005, 39 (1): 1-24. doi: 10.1287/trsc.1040.0108 [11] HENDERSON L F. On the fluid mechanics of human crowd motion[J]. Transportation Research, 1974, 8 (6): 509-515. doi: 10.1016/0041-1647(74)90027-6 [12] HUGHES R L. A continuum theory for the flow of pedestrians[J]. Transportation Research Part B: Methodological, 2002, 36 (6): 507-535. doi: 10.1016/S0191-2615(01)00015-7 [13] OKAZAKI S, MATSUSHITA S. A study of simulation model for pedestrian movement with evacuation and queuing[C]//SMITH R A, DICKIE J F. Proceedings of the International Conference on Engineering for Crowd Safety. Amsterdam: Elsevier, 1993. [14] YANG Bo, WANG Cheng, HUANG Hua, et al. A multi-agent and PSO based simulation for human behavior in emergency evacuation[C]//IEEE. 2007 International Conference on Computational Intelligence and Security. New York: IEEE, 2007: 296-300. [15] BLUE V J, ADLER J L. Emergent fundamental pedestrian flows from cellular automata microsimulation[J]. Transportation Research Record, 1998 (1644): 29-36. [16] FRUIN J J. Pedestrian Planning and Design[M]. New York: Metropolitan Association of Urban Designers and Environmental Planners, 1971. [17] HELBING D, JOHANSSON A, MATHIESEN J, et al. Analytical approach to continuous and intermittent bottleneck flows[J]. Physical Review Letters, 2006, 97 (16): 1-4. [18] 牟瑞芳, 杨锐, 王列妮. 熟悉环境条件下的公共场所人员疏散仿真模型研究[J]. 中国安全生产科学技术, 2015, 11 (5): 181-186. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201505033.htmMOU Rui-fang, YANG Rui, WANG Lie-ni. Study on simulation model of public place evacuation in a familiar environment[J]. Journal of Safety Science and Technology, 2015, 11 (5): 181-186. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201505033.htm [19] 李逊, 洪玲, 徐瑞华. 轨道交通车站应急疏散乘客心理行为影响因素分析[J]. 城市轨道交通研究, 2012 (4): 54-57. doi: 10.3969/j.issn.1007-869X.2012.04.014LI Xun, HONG Ling, XU Rui-hua. Influential factors of passengers'psychology and behavior on subway station emergency evacuation[J]. Urban Mass Transit, 2012 (4): 54-57. (in Chinese). doi: 10.3969/j.issn.1007-869X.2012.04.014 [20] ITO Y. Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory[J]. Neural Networks, 1991, 4 (3): 385-394. doi: 10.1016/0893-6080(91)90075-G [21] KHOLSHEVNIKOV V V, SHIELDS T J, BOYCE K E, et al. Recent developments in pedestrian flow theory and research in Russia[J]. Fire Safety Journal, 2008, 43 (2): 108-118. doi: 10.1016/j.firesaf.2007.05.005 [22] SHIELDS T J, BOYCE K E, SILCOCK G W H. Towards the characterization of large retail stores[J]. Fire and Materials, 1999, 23 (6): 325-331. doi: 10.1002/(SICI)1099-1018(199911/12)23:6<325::AID-FAM706>3.0.CO;2-0 [23] LI Fang, CHEN Shao-kuan, WANG Xiu-dan, et al. Pedestrian evacuation modeling and simulation on metro platforms considering panic impacts[J]. Procedia-Social and Behavioral Sciences, 2014, 138: 314-322. doi: 10.1016/j.sbspro.2014.07.209 [24] 陈绍宽, 李思悦, 李雪, 等. 地铁车站内乘客疏散时间计算方法研究[J]. 交通运输系统工程与信息, 2008, 8 (4): 101-107. doi: 10.3969/j.issn.1009-6744.2008.04.015CHEN Shao-kuan, LI Si-yue, LI Xue, et al. Modeling evacuation time for passengers from metro platform[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8 (4): 101-107. (in Chinese). doi: 10.3969/j.issn.1009-6744.2008.04.015 [25] 陈绍宽, 刘爽, 肖雄, 等. 基于M/G/c/c模型的地铁车站楼梯通道疏散能力瓶颈分析[J]. 铁道学报, 2012, 34 (1): 7-12. doi: 10.3969/j.issn.1001-8360.2012.01.002CHEN Shao-kuan, LIU Shuang, XIAO Xiong, et al. M/G/c/c-based model of passenger evacuation capacity of stairs and corridors in metro stations[J]. Journal of the China Railway Society, 2012, 34 (1): 7-12. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.01.002 [26] PREDTECHENSKII V M, MILINSKII A I. Planning for Foot Traffic Flow in Buildings[M]. New Delhi: Amerind Publishing Co. Pvt. Ltd., 1983. [27] 洪玲, 徐瑞华, 段晓英. 基于动态切换的城市轨道交通车站应急疏散模型[J]. 同济大学学报: 自然科学版, 2016, 44 (1): 87-94. doi: 10.3969/j.issn.1009-3060.2016.01.011HONG Ling, XU Rui-hua, DUAN Xiao-ying. Emergency evacuation model of urban rail transit station based on dynamic switching pattern[J]. Journal of Tongji University: Natural Science, 2016, 44 (1): 87-94. (in Chinese). doi: 10.3969/j.issn.1009-3060.2016.01.011 [28] 秦文虎, 查骏元, 苏国辉, 等. 人群疏散行为仿真技术研究[J]. 中国安全科学学报, 2008, 18 (2): 22-27. doi: 10.3969/j.issn.1003-3033.2008.02.004QIN Wen-hu, ZHA Jun-yuan, SU Guo-hui, et al. Study on simulating technology of crowd evacuation behaviors[J]. China Safety Science Journal, 2008, 18 (2): 22-27. (in Chinese). doi: 10.3969/j.issn.1003-3033.2008.02.004 [29] LAKOBA T I, KAUP D J, FINKEISTEIN N M. Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution[J]. Simulation, 2005, 81 (5): 339-352. doi: 10.1177/0037549705052772 [30] 陈建宏, 杨立兵. 基于AnyLogic地下空间火灾人员疏散仿真模拟[J]. 火灾科学, 2007 (4): 72-76.CHEN Jian-hong, YANG Li-bing. The simulation and imitating of pedestrians evacuation in fire based AnyLogic in underground room[J]. Fire Science, 2007 (4): 72-76. (in Chinese).