留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽车侧倾运动安全主动悬架LQG控制器设计方法

王亚雄 蔡宇萌 王健 姚明 陈士安

王亚雄, 蔡宇萌, 王健, 姚明, 陈士安. 汽车侧倾运动安全主动悬架LQG控制器设计方法[J]. 交通运输工程学报, 2017, 17(5): 138-148.
引用本文: 王亚雄, 蔡宇萌, 王健, 姚明, 陈士安. 汽车侧倾运动安全主动悬架LQG控制器设计方法[J]. 交通运输工程学报, 2017, 17(5): 138-148.
WANG Ya-xiong, CAI Yu-meng, WANG Jian, YAO Ming, CHEN Shi-an. Design method of active suspension LQG controller for rolling motion safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 138-148.
Citation: WANG Ya-xiong, CAI Yu-meng, WANG Jian, YAO Ming, CHEN Shi-an. Design method of active suspension LQG controller for rolling motion safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 138-148.

汽车侧倾运动安全主动悬架LQG控制器设计方法

基金项目: 

国家自然科学基金项目 51575239

福建省自然科学基金项目 2017J01690

详细信息
    作者简介:

    王亚雄(1988-), 男, 湖北宜城人, 福州大学副教授, 工学博士, 从事新能源汽车动力系统和悬架控制技术研究

    通讯作者:

    陈士安(1973-), 男, 湖北荆州人, 江苏大学教授, 工学博士

  • 中图分类号: U463.33

Design method of active suspension LQG controller for rolling motion safety of vehicle

More Information
  • 摘要: 为了提高汽车转向-侧倾运动的安全性, 设计了主动悬架侧倾运动安全LQG控制器; 建立了3自由度汽车转向-侧倾运动动力学模型, 选择横向载荷转移率、侧倾角及其加速度构建汽车侧倾安全综合性能评价指标; 为了解决现有设计方法无法跟踪系统干扰项(前轴转向角) 和控制加权矩阵行列式等于零带来的控制向量无法求解的难题, 将前轴转向角进行满足最小相位系统的微分变形, 并与原系统方程组成增广系统方程, 在综合性能评价指标中引入包含控制项的无穷小量, 以满足LQG控制器设计条件; 结合层次分析法和归一法, 以鱼钩工况为基础, 仿真获取汽车转向-侧倾运动统计数据, 进而确定LQG控制器的加权系数, 通过多工况数值仿真验证主动悬架侧倾运动安全LQG控制器的工作效果。仿真结果表明: 新设计的LQG控制器不干扰驾驶人的转向操纵; 与被动悬架相比, 在鱼钩工况、蛇形穿桩工况和双移线工况下, 采用LQG控制器的主动悬架可使汽车侧倾运动安全的主要评价指标即横向载荷转移率的方差分别降低了32.08%、32.82%、29.24%, 侧倾角的方差分别降低了47.74%、44.19%、63.41%, 侧倾角加速度的方差分别降低了87.30%、60.00%、86.39%, 说明采用新设计LQG控制器的主动悬架可大幅度改善汽车侧倾运动安全性, 且具有良好的转向工况适应性。

     

  • 图  1  三自由度转向-侧倾运动模型

    Figure  1.  Steering-rolling motion model with 3degrees of freedom

    图  2  鱼钩工况下前轴转角曲线

    Figure  2.  Curve of steered angle on front axle under fish-hook working condition

    图  3  鱼钩工况下悬架主动控制力曲线

    Figure  3.  Curves of active control forces of suspensions under fish-hook working condition

    图  4  鱼钩工况下侧倾角加速度曲线

    Figure  4.  Curves of roll angle accelerations under fish-hook working condition

    图  5  鱼钩工况下横向载荷转移率曲线

    Figure  5.  Curves of LTRs under fish-hook working condition

    图  6  鱼钩工况下侧倾角曲线

    Figure  6.  Curves of roll angles under fish-hook working condition

    图  7  鱼钩工况下质心的运动轨迹

    Figure  7.  Paths of mass centers under fish-hook working condition

    图  8  蛇形穿桩与双移线工况下前轴转角曲线

    Figure  8.  Curves of steered angle on front axle under slalom and double-lane change working conditions

    图  9  蛇形穿桩工况下悬架主动控制力曲线

    Figure  9.  Curves of active control forces of suspensions under slalom working condition

    图  10  蛇形穿桩工况下侧倾角加速度曲线

    Figure  10.  Curves of roll angle accelerations under slalom working condition

    图  11  蛇形穿桩工况下横向载荷转移率曲线

    Figure  11.  Curves of LTRs under slalom working condition

    图  12  蛇形穿桩工况下侧倾角曲线

    Figure  12.  Curves of roll angles under slalom working condition

    图  13  双移线工况下悬架主动控制力曲线

    Figure  13.  Curves of active control forces of suspensions under double-lane change working condition

    图  14  双移线工况下侧倾角加速度曲线

    Figure  14.  Curves of roll angle accelerations under double-lane change working condition

    图  15  双移线工况下横向载荷转移率曲线

    Figure  15.  Curves of LTRs under double-lane change working condition

    图  16  双移线工况下侧倾角曲线

    Figure  16.  Curves of roll angles under double-lane change working condition

    表  1  指标重要性比较值

    Table  1.   Comparison values of index importances

    下载: 导出CSV

    表  2  性能评价指标主观加权判断矩阵

    Table  2.   Judgment matrix of subjective weights of performance evaluating indexes

    下载: 导出CSV

    表  3  主观加权系数

    Table  3.   Subjective weights

    下载: 导出CSV

    表  4  汽车参数

    Table  4.   Vehicle parameters

    下载: 导出CSV

    表  5  控制加权系数

    Table  5.   Control weights

    下载: 导出CSV

    表  6  鱼钩工况下的性能指标

    Table  6.   Performance indexes under fish-hook working condition

    下载: 导出CSV

    表  7  蛇形穿桩工况下各性能指标

    Table  7.   Performance indexes under slalom working condition

    下载: 导出CSV

    表  8  双移线工况下的性能指标

    Table  8.   Performance indexes under double-lane change working condition

    下载: 导出CSV
  • [1] FARMER C M, LUND A K. Rollover risk of cars and light trucks after accounting for driver and environmental factors[J]. Accident Analysis and Prevention, 2002, 34 (2): 163-173. doi: 10.1016/S0001-4575(01)00010-0
    [2] CHENG C, CEBON D. Improving roll stability of articulated heavy vehicles using active semi-trailer steering[J]. Vehicle System Dynamics, 2008, 46 (S1): 373-388.
    [3] YOON J, CHO W, KANG Ju-yong, et al. Design and evaluation of a unified chassis control system for rollover prevention and vehicle stability improvement on a virtual test track[J]. Control Engineering Practice, 2010, 18 (6): 585-597. doi: 10.1016/j.conengprac.2010.02.012
    [4] VAN DER WESTHUIZEN S F, ELS P S. Slow active suspension control for rollover prevention[J]. Journal of Terramechanics, 2013, 50 (1): 29-36. doi: 10.1016/j.jterra.2012.10.001
    [5] CHEN Shi-an, WANG Jun-cheng, YAO Ming, et al. Improved optimal sliding mode control for a non-linear vehicle active suspension system[J]. Journal of Sound and Vibration, 2017, 395: 1-25. doi: 10.1016/j.jsv.2017.02.017
    [6] JIN Xian-jian, YIN Guo-dong, BIAN Cheng-tong, et al. Gain-scheduled vehicle handling stability control via integration of active front steering and suspension systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2016, 138 (1): 1-12.
    [7] 黄志刚, 毛恩荣, 梁新成, 等. 汽车悬架发展的研究[J]. 机械设计与制造, 2006 (11): 168-169. doi: 10.3969/j.issn.1001-3997.2006.11.071

    HUANG Zhi-gang, MAO En-rong, LIANG Xin-cheng, et al. Study of automobile's suspension development[J]. Machinery Design and Manufacture, 2006 (11): 168-169. (in Chinese). doi: 10.3969/j.issn.1001-3997.2006.11.071
    [8] ACARMAN T, ÖZGÜNER Ü. Rollover prevention for heavy trucks using frequency shaped sliding mode control[J]. Vehicle System Dynamics, 2006, 44 (10): 737-762. doi: 10.1080/00423110600610402
    [9] YIM Seong-jin, PARK Y, YI K. Design of active suspension and electronic stability program for rollover prevention[J]. International Journal of Automotive Technology, 2010, 11 (2): 147-153. doi: 10.1007/s12239-010-0020-6
    [10] YIM Seong-jin. Design of a robust controller for rollover prevention with active suspension and differential braking[J]. Journal of Mechanical Science and Technology, 2012, 26 (1): 213-222. doi: 10.1007/s12206-011-0915-9
    [11] 郭全民, 雷蓓蓓. 半主动悬架PID控制的研究和优化[J]. 国外电子测量技术, 2015, 34 (4): 60-63. doi: 10.3969/j.issn.1002-8978.2015.04.014

    GUO Quan-min, LEI Bei-bei. Research and optimization for semi-active suspension PID control[J]. Foreign Electronic Measurement Technology, 2015, 34 (4): 60-63. (in Chinese). doi: 10.3969/j.issn.1002-8978.2015.04.014
    [12] 陈杰平, 冯武堂, 郭万山, 等. 整车磁流变减振器半主动悬架变论域模糊控制策略[J]. 农业机械学报, 2011, 42 (5): 7-13, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201105001.htm

    CHEN Jie-ping, FENG Wu-tang, GUO Wan-shan, et al. Whole vehicle magneto-rheological fluid damper semi-active suspension variable universe fuzzy control simulation and test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42 (5): 7-13, 19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201105001.htm
    [13] BALAKRISHNAN B M, RAJARAM M. Investigations on vehicle rollover prevention using LQG regulator[J]. Advances in Mathematical Physics, 2014: 1-11.
    [14] 廖聪, 吴新烨, 黄红武. 客车半主动悬架防侧翻模糊滑模控制[J]. 厦门大学学报: 自然科学版, 2014, 53 (3): 373-377. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201403017.htm

    LIAO Cong, WU Xin-ye, HUANG Hong-wu. Semi-active suspension anti rollover control for bus using fuzzy sliding mode theory[J]. Journal of Xiamen University: Natural Science, 2014, 53 (3): 373-377. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201403017.htm
    [15] CHAI Ling-jiang, SUN Tao. The design of LQG controller for active suspension based on analytic hierarchy process[J]. Mathematical problems in Engineering, 2010: 1-19.
    [16] MIÈGE A J P, CEBON D. Active roll control of an experimental articulated vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219 (6): 791-806. doi: 10.1243/095440705X28385
    [17] 周博, 申海龙. 基于ADAMS的汽车侧翻仿真分析[J]. 大连交通大学学报, 2017, 38 (5): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201705008.htm

    ZHOU Bo, SHEN Hai-long. Analysis and research of vehicle rollover simulation based on ADAMS[J]. Journal of Dalian Jiaotong University, 2017, 38 (5): 27-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201705008.htm
    [18] 靳立强, 石冠男, 于雅静, 等. 基于零力矩点位置和模糊控制的商用车防侧翻控制[J]. 汽车工程, 2017, 39 (9): 1062-1067. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201709013.htm

    JIN Li-qiang, SHI Guan-nan, YU Ya-jing, et al. Anti-roll control for commercial vehicles based on zero-moment point position and fuzzy control[J]. Automotive Engineering, 2017, 39 (9): 1062-1067. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201709013.htm
    [19] 余强, 马建. 主动悬架系统对汽车侧翻稳定性改善分析[J]. 中国公路学报, 2005, 18 (3): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503024.htm

    YU Qiang, MA Jian. Analysis of improvement on automobile side tumbling stability with active suspension system[J]. China Journal of Highway and Transport, 2005, 18 (3): 114-117. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503024.htm
    [20] YU Jing, CHEN Xiao-qian, CHEN Li-hu. Optimal planning of LEO active debris removal based on hybrid optimal control theory[J]. Advances in Space Research, 2015, 55 (11): 2628-2640. doi: 10.1016/j.asr.2015.02.026
    [21] 柴陵江, 孙涛, 冯金芝, 等. 基于层次分析法的主动悬架LQG控制器设计[J]. 汽车工程, 2010, 32 (8): 712-718. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201008016.htm

    CHAI Ling-jiang, SUN Tao, FENG Jin-zhi, et al. design of the LQG controller for active suspension system based on analytic hierarchy process[J]. Automotive Engineering, 2010, 32 (8): 712-718. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201008016.htm
    [22] 陈士安, 邱峰, 何仁, 等. 一种确定车辆悬架LQG控制加权系数的方法[J]. 振动与冲击, 2008, 27 (2): 65-68, 176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200802013.htm

    CHEN Shi-an, QIU Feng, HE Ren, et al. A method for choosing weights in a suspension LQG control[J]. Journal of Vibration and Shock, 2008, 27 (2): 65-68, 176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200802013.htm
    [23] 杨益民, 杨旭兵, 景奉杰. 层次分析法中整体一致性判别及校正[J]. 武汉大学学报: 理学版, 2004, 50 (3): 306-310. https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY200403011.htm

    YANG Yi-min, YANG Xu-bing, JING Feng-jie. Judgment and correction of global consistency in AHP[J]. Journal of Wuhan University: Natural Science Edition, 2004, 50 (3): 306-310. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY200403011.htm
    [24] 金智林. 运动型多功能汽车侧翻稳定性及防侧翻控制[D]. 南京: 南京航空航天大学, 2008.

    JIN Zhi-lin. Rollover stability and anti-roll control for sport utility vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese).
    [25] CAI Yu-meng, JIANG You-liang, ZHANG Shi-jin, et al. Development and optimisation of an articulation system to improve intersection turning speed of bus rapid transit vehicle[J]. International Journal of Heavy Vehicle Systems, 2015, 22 (3): 213-235.
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  122
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-29
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回