留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶异常行为的一致性检测算法

马文耀 吴兆麟 李伟峰

马文耀, 吴兆麟, 李伟峰. 船舶异常行为的一致性检测算法[J]. 交通运输工程学报, 2017, 17(5): 149-158.
引用本文: 马文耀, 吴兆麟, 李伟峰. 船舶异常行为的一致性检测算法[J]. 交通运输工程学报, 2017, 17(5): 149-158.
MA Wen-yao, WU Zhao-lin, LI Wei-feng. Conformal detection algorithm of anomalous behaviors of vessel[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 149-158.
Citation: MA Wen-yao, WU Zhao-lin, LI Wei-feng. Conformal detection algorithm of anomalous behaviors of vessel[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 149-158.

船舶异常行为的一致性检测算法

基金项目: 

国家自然科学基金项目 51579025

广东省高等教育"创新强校工程"专项资金项目 Q15112

详细信息
    作者简介:

    马文耀(1980-), 男, 湖北潜江人, 广东海洋大学副教授, 大连海事大学工学博士研究生, 从事海上交通研究

    吴兆麟(1947-), 男, 江苏盐城人, 大连海事大学教授

    通讯作者:

    李伟峰(1983-), 男, 山东菏泽人, 大连海事大学讲师

  • 中图分类号: U675.95

Conformal detection algorithm of anomalous behaviors of vessel

More Information
  • 摘要: 为了准确检测船舶的操纵异常行为和降低异常行为误报警率, 提出了船舶异常行为的一致性检测算法; 在船舶轨迹点中引入能够体现操纵模式的特征, 以转向行为与变速行为度量了操纵行为相似性; 将空间位置相似性与操纵行为相似性进行组合, 定义了船舶综合行为相似性, 计算了单个轨迹点与训练轨迹序列中的最近邻特征点, 构建了一致性检测的样本序列; 为克服样本重叠的类分布情形, 改进了一致性检测算法的奇异值度量, 并用综合行为相似性计算样本间的非一致性得分, 利用单个轨迹点的随机性检验值判断该轨迹点与样本序列的分布一致性; 以琼州海峡实测AIS数据作为正常数据, 以计算机模拟随机产生异常轨迹和人工自定义操纵异常行为作为异常数据, 分别进行异常检测试验。试验结果表明: 随机产生的异常轨迹检测正确率为100%, 但是轨迹评价集中有一部分正常轨迹被错误划分成异常轨迹, 在指定置信度水平分别为99.0%和99.7%的情形下, 误报警率分别为0.6%和0.2%, 分别低于显著性水平0.01和0.003, 因此, 利用一致性检测算法能有效检测计算机产生的随机异常轨迹, 并可通过指定显著性水平严格控制检测误报警率, 能有效检测人工自定义的船舶变速与转向异常行为, 而且检测结果能随船舶行为改变而变化。

     

  • 图  1  奇异值度量

    Figure  1.  Nonconformity measure

    图  2  船舶操纵行为的轨迹点描述

    Figure  2.  Trajectory point description of ship maneuvering behavior

    图  3  船舶运动轨迹的获取流程

    Figure  3.  Acquisition flowchat of ship motion trajectory

    图  4  一致性异常检测算法

    Figure  4.  Anormal detection algorithm of conformity

    图  5  非一致性得分的计算流程

    Figure  5.  Calculation process of nonconformity score

    图  6  最相似轨迹点计算流程

    Figure  6.  Calculation process of most similar trajectory points

    图  7  训练轨迹

    Figure  7.  Training trajectories

    图  8  评价轨迹

    Figure  8.  Evaluating trajectories

    图  9  行为相似点查找

    Figure  9.  Search of trajectory points with similar behavior

    图  10  船舶进港操纵行为

    Figure  10.  Manipulation behaviors of ship when entering port

    图  11  船舶转向操纵行为

    Figure  11.  Turning manipulation behaviors of ship

    图  12  随操纵行为改变的检测结果

    Figure  12.  Test result changing with manipulation behaviors

    表  1  船舶行为相似度量结果

    Table  1.   Measurement result of ship behavior similarity

    下载: 导出CSV

    表  2  第1次试验结果

    Table  2.   First test result

    下载: 导出CSV
  • [1] 朱飞祥, 张英俊, 高宗江. 基于数据挖掘的船舶行为研究[J]. 中国航海, 2012, 35 (2): 50-54. doi: 10.3969/j.issn.1000-4653.2012.02.011

    ZHU Fei-xiang, ZHANG Ying-jun, GAO Zong-jiang. Research on ship behaviors based on data mining[J]. Navigation of China, 2012, 35 (2): 50-54. (in Chinese). doi: 10.3969/j.issn.1000-4653.2012.02.011
    [2] VESPE M, VISENTINI I, BRYAN K, et al. Unsupervised learning of maritime traffic patterns for anomaly detection[C]//IEEE. 9th IET Data Fusion and Target Tracking Conference: Algorithms and Applications. New York: IEEE, 2012: 1-5.
    [3] 陈金海, 陆锋, 彭国均. 海洋运输船舶轨迹分析研究进展[J]. 中国航海, 2012, 35 (3): 53-57. doi: 10.3969/j.issn.1000-4653.2012.03.012

    CHEN Jin-hai, LU Feng, PENG Guo-jun. The progress of research in maritime vessel trajectory analysis[J]. Navigation of China, 2012, 35 (3): 53-57. (in Chinese). doi: 10.3969/j.issn.1000-4653.2012.03.012
    [4] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction[J]. Entropy, 2013, 15 (6): 2288-2315.
    [5] MORRIS B, TRIVEDI M. A survey of vision-based trajectory learning and analysis for surveillance[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18 (8): 1114-1127. doi: 10.1109/TCSVT.2008.927109
    [6] SILVERIA P A M, TEIXEIRA A P, GUEDES SOARES C. Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal[J]. Journal of Navigation, 2013, 66: 879-898. doi: 10.1017/S0373463313000519
    [7] PALLOTTA G, VESPE M, BRYAN K. Traffic knowledge discovery from AIS data[C]//IEEE. 16th International Conference on Information Fusion. New York: IEEE, 2013: 1996-2003.
    [8] CHEN Chun-hsien, KHOO Li-pheng, CHONG Yih-tng, et al. Knowledge discovery using genetic algorithm for maritime situational awareness[J]. Expert Systems with Applications, 2014, 41 (2): 2742-2753.
    [9] MORRIS B, TRIVEDI M. Learning trajectory patterns by clustering: experimental studies and comparative evaluation[C]//IEEE. 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2009: 312-319.
    [10] DAHLBOM A, NIKLASSON L. Trajectory clustering for coastal surveillance[C]//IEEE. 10th International Conference on Information Fusion. New York: IEEE, 2007: 1-8.
    [11] LAXHAMMAR R, FALKMAN G, SVIESTINS E. Anomaly detection in sea traffic-a comparison of the Gaussian Mixture Model and the Kernel Density Estimaton[C]//IEEE. 12th International Conference on Information Fusion. New York: IEEE, 2009: 756-763.
    [12] RISTIC B, LASCALA B, MORELANDE M, et al. Statistical analysis of motion patterns in AIS data: anomaly detection and motion prediction[C]//IEEE. 11th International Conference on Information Fusion. Cologne: IEEE, 2008: 1-7.
    [13] MASCARO S, NICHOLSO A E, KORB K B. Anomaly detection in vessel tracks using Bayesian networks[J]. International Journal of Approximate Reasoning, 2014, 55 (1): 84-98. doi: 10.1016/j.ijar.2013.03.012
    [14] 肖潇, 邵哲平, 潘家财, 等. 基于AIS信息的船舶轨迹聚类模型及应用[J]. 中国航海, 2015, 38 (2): 82-86. doi: 10.3969/j.issn.1000-4653.2015.02.020

    XIAO Xiao, SHAO Zhe-ping, PAN Jia-cai, et al. Ship trajectory clustering model based on AIS data and its application[J]. Navigation of China, 2015, 38 (2): 82-86. (in Chinese). doi: 10.3969/j.issn.1000-4653.2015.02.020
    [15] 马文耀, 吴兆麟, 杨家轩, 等. 基于单向距离的谱聚类船舶运动模式辨识[J]. 重庆交通大学学报: 自然科学版, 2015, 34 (5): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201505026.htm

    MA Wen-yao, WU Zhao-lin, YANG Jia-xuan, et al. Vessel motion pattern recognition based on One-Way distance spectral clustering algorithm[J]. Journal of Chongqing Jiaotong University: Natural Science, 2015, 34 (5): 130-134. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201505026.htm
    [16] 甄荣, 邵哲平, 潘家财, 等. 基于统计学理论的船舶轨迹异常识别[J]. 集美大学学报: 自然科学版, 2015, 20 (3): 193-197. doi: 10.3969/j.issn.1007-7405.2015.03.006

    ZHEN Rong, SHAO Zhe-ping, PAN Jia-cai, et al. A study on the identification of abnormal ship trajectory based on statistic theories[J]. Journal of Jimei University: Natural Science, 2015, 20 (3): 193-197. (in Chinese). doi: 10.3969/j.issn.1007-7405.2015.03.006
    [17] LANE R O, NEVELL D A, HAYWARD S D, et al. Maritime anomaly detection and threat assessment[C]//IEEE. 13th International Conference on Information Fusion. New York: IEEE, 2010: 1-8.
    [18] KOWALSKA K, PEEL L. Maritime anomaly detection using Gaussian Process active learning[C]//IEEE. 15th International Conference on Information Fusion. New York: IEEE, 2012: 1164-1171.
    [19] DEVRIES G K D, VAN SOMEREN M. Machine learning for vessel trajectories using compression, alignments and domain knowledge[J]. Expert Systems with Applications, 2012, 39 (18): 13426-13439. doi: 10.1016/j.eswa.2012.05.060
    [20] KAZEMI S, ABGHARI S, LAVESSON N, et al. Open data for anomaly detection in maritime surveillance[J]. Expert Systems with Applications, 2013, 40 (14): 5719-5729. doi: 10.1016/j.eswa.2013.04.029
    [21] VOVK V, GAMMERMAN A, SHAFER G. Algorithmic Learning in A Random World[M]. Berlin: Springer, 2005.
    [22] 王华珍. 带置信度分类器的研究与应用[D]. 厦门: 厦门大学, 2009.

    WANG Hua-zhen. Research and application of classifier with confidence[D]. Xiamen: Xiamen University, 2009. (in Chinese).
    [23] GAMMERMAN A, VOVK V. Hedging predictions in machine learning[J]. Computer Journal, 2007, 50 (2): 151-163. doi: 10.1093/comjnl/bxl065
    [24] PAPADOPOULOS H, VOVK V, GAMMERMAN A. Regression conformal prediction with nearest neighbours[J]. Journal of Artificial Intelligence Research, 2011, 40: 815-840. doi: 10.1613/jair.3198
    [25] LAXHAMMAR R. Conformal anomaly detection: detecting abnormal trajectories in surveillance applications[D]. Sk9vde: University of Sk9vde, 2014.
    [26] SMITH J, NOURETDINOV I, CRADDOCK R, et al. Anomaly detection of trajectories with kernel density estimation by conformal prediction[C]//Springer. IFIPInternational Conference on Artificial Intelligence Applications and Innovations. Berlin: Springer, 2014: 271-280.
    [27] LIU Bo, DE SOUZA E N, HILLIARD C, et al. Ship movement anomaly detection using specialized distance measures[C]//IEEE. 18th International Conference on Information Fusion. New York: IEEE, 2015: 1113-1120.
    [28] SIDIBE A, SHU G. Study of automatic anomalous behaviour detection techniques for maritime vessels[J]. Journal of Navigation, 2017, 70 (4): 847-858.
    [29] JANSSENS J H M, HIEMSTRA H, POSTMA E O. Creating artificial vessel trajectories with Presto[C]//BNVKI. 22nd Benelux Conference on Artificial Intelligence. Groningen: University of Groningen, 2010: 1-2.
    [30] LEI Po-ruey. A framework for anomaly detection in maritime trajectory behavior[J]. Knowledge and Information Systems, 2016, 47 (1): 189-214.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  727
  • HTML全文浏览量:  205
  • PDF下载量:  1174
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-22
  • 刊出日期:  2017-10-25

目录

    /

    返回文章
    返回