Influence of asphalt mixture volume indexes on asphalt pavement skid resistance performance
-
摘要: 为研究沥青路面抗滑性能与沥青混合料体积指标的关联, 揭示不同体积指标对抗滑性能的影响程度, 采用真空法和塑封法对不同AC-16型沥青混合料进行密度试验, 对比了空隙率、矿料间隙率、有效沥青饱和度和粗集料框架间隙率等体积指标; 对沥青混合料进行室内磨光试验和摆值测试, 采用Asymptotic模型拟合其抗滑性能的衰变趋势, 得到了抗滑初值、稳定值与减幅等参数; 建立了体积指标与抗滑性能的函数关系, 并应用灰色关联理论分析了不同体积指标与抗滑性能之间的灰色关联度排序。研究结果表明: 不同体积指标对抗滑性能的影响存在差异, 随着沥青混合料空隙率和矿料间隙率的增加及有效沥青饱和度和粗集料框架间隙率的降低, 沥青混合料的抗滑性能增大; 灰色关联度排序为空隙率最大, 矿料间隙率其次, 再次为有效沥青饱和度, 粗集料框架间隙率最小, 可见空隙率是影响抗滑性能的最主要因素, 矿料间隙率对抗滑性能影响显著, 有效沥青饱和度和粗集料框架间隙率的影响程度不大; 在设计、施工中, 可通过合理控制混合料空隙率, 调节混合料密实状态和紧密状态等方式提高沥青路面抗滑性能。Abstract: To study the relevance between asphalt pavement skid resistance performance and asphalt mixture volume indexes, and reveal the influence degrees of different volume indexes on the skid resistance performance, the density experiments of different AC-16 asphalt mixtures were conducted by vacuum method and plastic encapsulation method, and the volume indexes such as volumetric voidage (VV), void in mineral aggregate (VMA), void filled with asphalt (VFA) and void in coarse aggregate (VCA) were compared.Indoor polishing test and pendulum test on asphalt mixtures were conducted, asymptotic model was used to fit the skid resistance's decay trend, and the parameters such as the initial value, steady value and damping value of skid resistance were obtained.The function relationships between the volume indexes and the skid resistance performance were built, and the grey correlation degree ranks between the differentvolume indexes and the skid resistance performance were analyzed by grey correlation theory.Research result indicates that there are some differences between the influences of different volume indexes on the skid resistance performance.The skid resistance performance of asphalt mixture increases with the increase of VV and VMA, and the decrease of VFA and VCA.Grey correlation degree descending order is VV, VMA, VFA and VCA, which means that VV is the main influence factor of skid resistance performance, the influence of VMA on skid resistance performance is significant, however, the influence degrees of VFA and VCA are not obvious.In the design and construction process, the asphalt pavement skid resistance performance can be improved by controlling mixture voidage and adjusting the dense state and compact condition of mixture.
-
表 1 沥青混合料级配
Table 1. Asphalt mixture gradations
表 2 沥青基本性质
Table 2. Basic properties of asphalts
表 3 沥青混合料体积指标
Table 3. Volume indexes of asphalt mixtures
表 4 典型油石比下沥青混合料的体积指标
Table 4. Volume indexes of asphalt mixtures under typical asphalt-aggregate ratios
表 5 沥青混合料抗滑值
Table 5. Skid resistance values of asphalt mixtures
表 6 抗滑值拟合结果
Table 6. Fitting result of skid resistance values
表 7 沥青混合料试验结果
Table 7. Test result of asphalt mixtures
表 8 试验结果初始化
Table 8. Initialization of test result
表 9 体积指标的求差序列
Table 9. Difference value lists of volume indexes
表 10 0各影响因素的灰色关联系数
Table 10. Grey correlation coefficients of influence factors
-
[1] 江晓霞, 覃润浦, 高文阳, 等. 超大粒径沥青混合料级配分形特性与力学指标[J]. 交通运输工程学报, 2013, 13 (1): 7-14. doi: 10.3969/j.issn.1671-1637.2013.01.002JIANG Xiao-xia, QIN Run-pu, GAO Wen-yang, et al. Gradation fractal characteristic and mechanical indexes of super large stone mixture[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (1): 7-14. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.01.002 [2] CARO S, DIAZ A, ROJAS D, et al. A micromechanical model to evaluate the impact of air void content and connectivity in the oxidation of asphalt mixtures[J]. Construction and Building Materials, 2014, 61: 181-190. doi: 10.1016/j.conbuildmat.2014.03.013 [3] LEE J S, GIBSON N, KIM Y R. Use of mechanistic models to investigate fatigue performance of asphalt mixtures: effects of asphalt mix design targets and compaction[J]. Transportation Research Record, 2015 (2507): 108-119. [4] KUNA K, AIREY G, THOM N. Mix design considerations of foamed bitumen mixtures with reclaimed asphalt pavement material[J]. International Journal of Pavement Engineering, 2017, 18 (10): 902-915. doi: 10.1080/10298436.2015.1126271 [5] YIN Ji-ming, WANG Sheng-yue. Improving the performance of asphalt mixture by addition of short-thin wheat straw pieces[J]. International Journal of Pavement Engineering, 2016, 17 (6): 528-541. doi: 10.1080/10298436.2015.1007228 [6] ZHANG Dong, HUANG Xiao-ming, ZHAO Yong-li, et al. Rubberized asphalt mixture design using a theoretical model[J]. Construction and Building Materials, 2014, 67: 265-269. doi: 10.1016/j.conbuildmat.2014.01.011 [7] DANIEL J S, LACHANCE A. Mechanistic and volumetric properties of asphalt mixtures with recycled asphalt pavement[J]. Transportation Research Record, 2005 (1929): 28-36. [8] 刘树堂, 曹卫东, 任晓刚, 等. Superpave体系级配设计关键技术分析与VMA曲线预测[J]. 中国公路学报, 2015, 28 (2): 8-13, 25. doi: 10.3969/j.issn.1001-7372.2015.02.002LIU Shu-tang, CAO Wei-dong, REN Xiao-gang, et al. Analysis of key issues about gradation design in superpave system and VMA curve prediction[J]. China Journal of Highway and Transport, 2015, 28 (2): 8-13, 25. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.02.002 [9] CUI Xin-zhuang, ZHOU Xing-lin, LOU Jun-jie, et al. Measurement method of asphalt pavement mean texture depth based on multi-line laser and binocular vision[J]. International Journal of Pavement Engineering, 2017, 18 (5): 459-471. doi: 10.1080/10298436.2015.1095898 [10] 彭勇, 孙立军. 空隙率对沥青混合料性能影响[J]. 武汉理工大学学报: 交通科学与工程版, 2009, 33 (5): 826-829. doi: 10.3963/j.issn.1006-2823.2009.05.004PENG Yong, SUN Li-jun. Effects of air void content on asphalt mixture performance[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2009, 33 (5): 826-829. (in Chinese). doi: 10.3963/j.issn.1006-2823.2009.05.004 [11] 杨瑞华, 许志鸿. 密级配沥青混合料集料分形分维与路用性能的关系[J]. 土木工程学报, 2007, 40 (3): 98-103, 109. doi: 10.3321/j.issn:1000-131X.2007.03.017YANG Rui-hua, XU Zhi-hong. Relationship between fractal dimension and road performance of asphalt mixture[J]. China Civil Engineering Journal, 2007, 40 (3): 98-103, 109. (in Chinese). doi: 10.3321/j.issn:1000-131X.2007.03.017 [12] 周兴林, 肖神清, 肖旺新, 等. 粗集料表面纹理粗糙度的多重分形评价[J]. 华中科技大学学报: 自然科学版, 2017, 45 (2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201702006.htmZHOU Xing-lin, XIAO Shen-qing, XIAO Wang-xin, et al. Multi-fractal evaluation on roughness of coarse aggregate surface texture[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45 (2): 29-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201702006.htm [13] 黄卫东, 黄明, 郑茂, 等. 橡胶沥青混合料SAC-13级配空隙率变化分析[J]. 同济大学学报: 自然科学版, 2012, 40 (5): 685-690. doi: 10.3969/j.issn.0253-374x.2012.05.006HUANG Wei-dong, HUANG Ming, ZHENG Mao, et al. Air void variation of asphalt rubber mixture grade SAC-13[J]. Journal of Tongji University: Natural Science, 2012, 40 (5): 685-690. (in Chinese). doi: 10.3969/j.issn.0253-374x.2012.05.006 [14] 谭忆秋, 邢超, 张磊, 等. 均质性对沥青混合料应变场分布的影响[J]. 中国公路学报, 2016, 29 (4): 8-13. doi: 10.3969/j.issn.1001-7372.2016.04.002TAN Yi-qiu, XING Chao, ZHANG Lei, et al. Effects of homogeneity on asphalt mixture strain field distribution[J]. China Journal of Highway and Transport, 2016, 29 (4): 8-13. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.04.002 [15] 彭勇, 孙立军, 石永久, 等. 沥青混合料均匀性与路用性能指标的关系[J]. 同济大学学报: 自然科学版, 2008, 36 (4): 488-492. doi: 10.3321/j.issn:0253-374X.2008.04.012PENG Yong, SUN Li-jun, SHI Yong-jiu, et al. Relationship between homogeneity and indices of asphalt pavement performance[J]. Journal of Tongji University: Natural Science, 2008, 36 (4): 488-492. (in Chinese). doi: 10.3321/j.issn:0253-374X.2008.04.012 [16] QIAN Zhen-dong, LIU Yang, LIU Chang-bo, et al. Design and skid resistance evaluation of skeleton-dense epoxy asphalt mixture for steel bridge deck pavement[J]. Construction and Building Materials, 2016, 114: 851-863. doi: 10.1016/j.conbuildmat.2016.03.210 [17] 童申家, 谢祥兵, 赵大勇. 沥青路面纹理分布的分形描述及抗滑性能评价[J]. 中国公路学报, 2016, 29 (2): 1-7. doi: 10.3969/j.issn.1001-7372.2016.02.001TONG Shen-jia, XIE Xiang-bing, ZHAO Da-yong. Fractal description of texture distribution and evaluation of skidresistance performance for asphalt pavement[J]. China Journal of Highway and Transport, 2016, 29 (2): 1-7. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.02.001 [18] MEEGODA J N, GAO Sheng-yan. Evaluation of pavement skid resistance using high speed texture measurement[J]. Journal of Traffic and Transportation Engineering: English Edition, 2015, 2 (6): 382-390. doi: 10.1016/j.jtte.2015.09.001 [19] 周兴林, 刘万康, 冉茂平, 等. 酸雨对石灰岩沥青混合料抗滑性的影响[J]. 公路, 2016 (8): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201608007.htmZHOU Xing-lin, LIU Wan-kang, RAN Mao-ping, et al. Influence of acid rain in skid resistance of limestone asphalt pavement[J]. Highway, 2016 (8): 26-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201608007.htm [20] DO M T, TANG Zhen-zhong, KANE M, et al, Pavement polishing—development of a dedicated laboratory test and its correlation with road results[J]. Wear, 2007, 263: 36-42. doi: 10.1016/j.wear.2006.12.086 [21] 梅廷义, 刘斌. AC型沥青混合料体积指标对车辙的影响[C]∥中国公路学会. 第四届全国公路科技创新高层论坛论文集. 北京: 中国公路学会, 2008: 114-117.MEI Ting-yi, LIU Bin. Influence on rut by AC model asphalt mixtures'volume specification[C]∥China Highway and Transportation Society. The Fourth Session of National Road Top BBS on Science and Technology Innovation. Beijing: China Highway and Transportation Society, 2008: 114-117. (in Chinese). [22] 黄慧光. 空隙率对OGFC-13路用性能及排水功能的影响分析[J]. 中外公路, 2014, 34 (3): 227-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201403059.htmHUANG Hui-guang. Analysis of the influence of void fraction on OGFC-13road performance and drainage function[J]. Journal of China and Foreign Highway, 2014, 34 (3): 227-230. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201403059.htm [23] 黄卫东, 黄明, 郑茂, 等. 橡胶沥青混合料SAC-13级配空隙率变化分析[J]. 同济大学学报: 自然科学版, 2012, 40 (5): 685-690. doi: 10.3969/j.issn.0253-374x.2012.05.006HUANG Wei-dong, HUANG Ming, ZHENG Mao, et al. Air void variation of asphalt rubber mixture grade SAC-13[J]. Journal of Tongji University: Natural Science, 2012, 40 (5): 685-690. (in Chinese). doi: 10.3969/j.issn.0253-374x.2012.05.006 [24] 彭余华, 胡佳寅, 胡顺峰. AC-25粒度分布对级配离析的影响[J]. 交通运输工程学报, 2014, 14 (5): 1-7, 18. doi: 10.3969/j.issn.1671-1637.2014.05.001PENG Yu-hua, HU Jia-yin, HU Shun-feng. Influence of AC-25particle size distribution on gradation segregation[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (5): 1-7, 18. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.05.001 [25] WANG Deng-feng, JIANG Rong-chao, LU Wen-chao, et al. Optimization of cab suspension parameters of self-dumping trucks using grey relational analysis[J]. The Journal of Grey System, 2016, 28 (2): 76-89.