Influence of air gap on dynamic response of LIM metro system
Article Text (Baidu Translation)
-
摘要: 应用概率统计和频域分析理论, 分析了广州地铁4号线列车行驶过程中直线电机与感应板间动态气隙的实测数据; 建立了车辆-轨道垂横向耦合动力学模型, 研究了受气隙影响的垂向电磁力对车体和轨道系统的动力影响, 并与轨道随机不平顺对系统的动力影响进行了对比。研究结果表明: 92.2%的气隙在912mm的标准范围内, 且服从均值为10.5mm、标准差为1mm的正态分布; 感应板上表面与钢轨顶面的高度差是峰值气隙的决定因素, 通过气隙静态测量可确定线路的最不利气隙位置; 气隙的频域成分以小于0.1m-1的空间频率为主, 并存在0.2m-1的频率尖峰, 即气隙存在约为5m的周期成分; 垂向电磁力对车体加速度影响较小; 垂向电磁力可使轨道结构产生上升位移, 在同时存在轨道不平顺的情况下, 钢轨最大位移可达0.8mm, 轨道板最大位移可达1.0mm; 轨道不平顺是轨道结构持续振动的主要诱因, 垂向电磁力只会在开始作用于轨道结构的瞬间产生较大加速度, 垂向电磁力引起的轨道结构最大加速度大于轨道不平顺引起的最大加速度, 轨道不平顺和垂向电磁力的共同作用效果远大于单一因素的影响, 钢轨加速度可达2 200m·s-2, 轨道板加速度可达1 500m·s-2; 垂向电磁力对轮轨垂向力的最大影响在9kN以内; 可采用动态和静态检测相结合的方法测量气隙, 先应用列车上的动态检测设备测量出线路感应板超限点的大体位置, 然后进行人工精确测量, 维护后再次使用动态检测法进行气隙合格检验, 实现快速、精确、有效维护线路感应板的目的, 减小气隙对轨道结构垂向振动的影响。Abstract: Based on the theory of probability statistics and frequency domain analysis, the measured data of dynamic air gap between linear induction motor (LIM) and reaction plate (RP) during the train's running on Guangzhou Metro Line 4 were analyzed.Based on the vehicle-track vertical and lateral coupling dynamics model, the dynamic effect of vertical electromagnetic force influenced by the air gap on the vehicle and the track structure was studied and compared with the effect of track random irregularities on the dynamics properties of vehicle-track system.Research result shows that 92.2% of air gaps are within the standard range of 9-12 mm.The air gap obeys the normal distribution, the mean is 10.5 mm, and the standard deviation is 1 mm.The heightdifference between the upper surface of RP and the top of track is the determinant factor of peak air gap, so the most unfavorable position of air gap on the line can be determined by static air gap measurement.The frequency domain component of air gap is dominated by the spatial frequencies less than 0.1 m-1, and the frequency peak of 0.2 m-1 is found, which proves that a periodic component of about 5 mis in the air gap.The vertical electromagnetic force has little effect on the acceleration of vehicle.The vertical electromagnetic force can increase the displacement of track structure.When the track irregularity exists at the same time, the track displacement can reach up to 0.8 mm, and the maximum displacement of track slab can reach 1.0 mm.The track irregularity is the main cause of track structure's continuous vibration. The vertical electromagnetic force only results in larger accelerations at the moment beginning to act on the track structure. The maximum acceleration of track structure caused by the vertical electromagnetic force is greater than the maximum acceleration caused by the track irregularity.The coupling influence of track irregularity and vertical electromagnetic force on the track structure acceleration is far greater than single factor influence, the track acceleration can reach2 200 m·s-2, and the track slab acceleration can reach 1 500 m·s-2.The maximum effect of vertical electromagnetic force on the wheel/rail vertical force is less than 9 kN.Therefore, the dynamic and static detection methods can be used to measure the air gap.First, the general location of RP's over limit point is measured by the dynamic detection device on the train, then the artificial precision measurement is carried out.After maintenance, the dynamic detection is used again for air gap's qualification test.The method can quickly and accurately maintain the whole line's RP and reduce the influence of air gap on the track structure's vertical vibration.
-
Key words:
- railway engineering /
- LIM /
- dynamics simulation /
- air gap /
- dynamic response /
- dynamic detection
-
[1] FORTIN C. Dynamic curving simulation of forced-steering rail vehicles[D]. Kingston: Queen's University, 1984. [2] 王可丽. 直线电机地铁运载系统轨道关键技术的研究[D]. 北京: 北京交通大学, 2005.WANG Ke-li. Study of key technology of track drived by liner induction motor[D]. Beijing: Beijing Jiaotong University, 2005. (in Chinese). [3] 魏庆朝, 郑方圆, 冯雅薇, 等. 轨道不平顺对直线电机轮轨系统动力特性影响[J]. 铁道工程学报, 2017 (1): 36-40, 128. doi: 10.3969/j.issn.1006-2106.2017.01.008WEI Qing-chao, ZHENG Fang-yuan, FENG Ya-wei, et al. Influence of track irregularity on LIM wheel/rail system dynamic characteristics[J]. Journal of Railway Engineering Society, 2017 (1): 36-40, 128. (in Chinese). doi: 10.3969/j.issn.1006-2106.2017.01.008 [4] 冯雅薇, 魏庆朝, 高亮, 等. 直线电机地铁车轨系统动力响应分析[J]. 工程力学, 2006, 23 (12): 159-164, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200612027.htmFENG Ya-wei, WEI Qing-chao, GAO Liang, et al. Dynamic analysis on vehicle-track interaction of linear metro system[J]. Engineering Mechanics, 2006, 23 (12): 159-164, 122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200612027.htm [5] 魏庆朝, 邓亚士, 冯雅薇. 电机悬挂方式对LIM地铁系统动力特性的影响研究[J]. 铁道工程学报, 2007 (11): 59-64. doi: 10.3969/j.issn.1006-2106.2007.11.013WEI Qing-chao, DENG Ya-shi, FENG Ya-wei. Study of suspension mode influences on LIM metro system dynamic characters[J]. Journal of Railway Engineering Society, 2007 (11): 59-64. (in Chinese). doi: 10.3969/j.issn.1006-2106.2007.11.013 [6] 龙许友, 魏庆朝, 冯雅薇, 等. 轨道不平顺激励下直线电机车辆/轨道动力响应[J]. 交通运输工程学报, 2008, 8 (2): 9-13. doi: 10.3321/j.issn:1671-1637.2008.02.003LONG Xu-you, WEI Qing-chao, FENG Ya-wei, et al. Dynamic response of linear metro vehicle/track excited by track irregularity[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (2): 9-13. (in Chinese). doi: 10.3321/j.issn:1671-1637.2008.02.003 [7] 赵金顺, 万传风, 张勇, 等. 直线电机轨道交通车线耦合模型的动力响应研究[J]. 铁道学报, 2006, 28 (5): 129-133. doi: 10.3321/j.issn:1001-8360.2006.05.024ZHAO Jin-shun, WAN Chuan-feng, ZHANG Yong, et al. Research on dynamic response of coupled model between vehicle and track for LIM track transportation[J]. Journal of the China Railway Society, 2006, 28 (5): 129-133. (in Chinese). doi: 10.3321/j.issn:1001-8360.2006.05.024 [8] 郭薇薇, 夏禾. 直线电机列车作用下高架桥的动力响应分析[J]. 中国铁道科学, 2007, 28 (4): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200704013.htmGUO Wei-wei, XIA He. Dynamic response analysis of elevated bridge under linear induction motor train[J]. China Railway Science, 2007, 28 (4): 55-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200704013.htm [9] 刘彬彬, 曾京, 罗仁, 等. 直线感应电机车辆建模与动力学仿真[J]. 交通运输工程学报, 2009, 9 (5): 37-43, 61. http://transport.chd.edu.cn/article/id/200905007LIU Bin-bin, ZENG Jing, LUO Ren, et al. Modeling and dynamics simulation of vehicle with linear induction motor[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (5): 37-43, 61. (in Chinese). http://transport.chd.edu.cn/article/id/200905007 [10] 刘彬彬, 罗仁, 曾京, 等. 地铁直线电机车辆曲线通过仿真[J]. 城市轨道交通研究, 2011 (2): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201102017.htmLIU Bin-bin, LUO Ren, ZENG Jing, et al. Simulation of curve negotiation of linear metro vehicle[J]. Urban Mass Transit, 2011 (2): 56-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201102017.htm [11] 熊嘉阳, 曹亚博, 吴磊, 等. 轮轨纵向几何不平顺对直线电机地铁车辆动态行为的影响[J]. 西南交通大学学报, 2015, 50 (6): 1074-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201506014.htmXIONG Jia-yang, CAO Ya-bo, WU Lei, et al. Effect of longitudinal geometric irregularities of wheel and rail on dynamic behavior of metro vehicle driven by linear motor[J]. Journal of Southwest Jiaotong University, 2015, 50 (6): 1074-1081. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201506014.htm [12] 宗凌潇, 马卫华, 罗世辉. 直线电机地铁车辆电机的隔振优化分析[J]. 机械工程学报, 2015, 51 (18): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201518016.htmZONG Ling-xiao, MA Wei-hua, LUO Shi-hui. Optimization analysis of vibration isolation of linear motor of metro vehicles[J]. Journal of Mechanical Engineering, 2015, 51 (18): 119-125. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201518016.htm [13] 王晨, 罗世辉, 马卫华, 等. 考虑垂向电磁力的直线电机车辆的轮轨匹配关系研究[J]. 铁道机车车辆, 2015, 35 (2): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502029.htmWANG Chen, LUO Shi-hui, MA Wei-hua, et al. Study on wheel/rail matching relationship for the linear motor vehicle considering vertical electromagnetic force[J]. Railway Locomotive and Car, 2015, 35 (2): 110-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502029.htm [14] 刘高坤, 张江, 王树森, 等. 直线电机地铁车辆动力学性能仿真研究的新方法[J]. 机车电传动, 2015 (2): 103-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201502030.htmLIU Gao-kun, ZHANG Jiang, WANG Shu-sen, et al. New method of dynamics performance simulation for metro vehicle with linear motor[J]. Electric Drive for Locomotives, 2015 (2): 103-106. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201502030.htm [15] 刘高坤. 电磁力对直线电机地铁车辆曲线通过性能的影响[J]. 机车电传动, 2016 (5): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201605029.htmLIU Gao-kun. Influence of electromagnetic force on curve passing dynamic performance of LIM metro vehicle[J]. Electric Drive for Locomotives, 2016 (5): 85-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201605029.htm [16] 庄哲, 梁鑫, 林建辉, 等. 轴箱布置方式对地铁直线电机车辆动力学性能的影响[J]. 城市轨道交通研究, 2017 (9): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201709006.htmZHUANG Zhe, LIANG Xin, LIN Jian-hui, et al. Influence of axle box arrangement on the dynamic performance of linear motor metro[J]. Urban Mass Transit, 2017 (9): 30-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201709006.htm [17] 戴焕云, 王欢, 林俊. 独立旋转车轮直线电机地铁车辆动力学分析[J]. 工程设计学报, 2009, 16 (1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ200901020.htmDAI Huan-yun, WANG Huan, LIN Jun. Dynamic analysis of linear motor vehicle with independent rotating wheels[J]. Journal of Engineering Design, 2009, 16 (1): 75-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ200901020.htm [18] 冯雅薇. 直线电机地铁车辆/轨道动力相互作用研究[D]. 北京: 北京交通大学, 2006.FENG Ya-wei. Study on the dynamic interaction of linear metro vehicle-track system[D]. Beijing: Beijing Jiaotong University, 2006. (in Chinese). [19] 罗仁, 邬平波, 刘彬彬. 地铁车辆直线电机恒隙控制仿真[J]. 交通运输工程学报, 2010, 10 (4): 50-57. http://transport.chd.edu.cn/article/id/201004009LUO Ren, WU Ping-bo, LIU Bin-bin. Constant air gap control simulation of linear induction motor of metro vehicle[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (4): 50-57. (in Chinese). http://transport.chd.edu.cn/article/id/201004009 [20] KUO Chen-ming, HUANG Cheng-hao, CHEN Yi-yi. Vibration characteristics of floating slab track[J]. Journal of Sound and Vibration, 2008, 317 (3-5): 1017-1034. -