留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气隙对直线电机地铁系统动力响应的影响

魏庆朝 夏景辉 臧传臻 郝敏 梁青槐

魏庆朝, 夏景辉, 臧传臻, 郝敏, 梁青槐. 气隙对直线电机地铁系统动力响应的影响[J]. 交通运输工程学报, 2017, 17(6): 10-18.
引用本文: 魏庆朝, 夏景辉, 臧传臻, 郝敏, 梁青槐. 气隙对直线电机地铁系统动力响应的影响[J]. 交通运输工程学报, 2017, 17(6): 10-18.
WEI Qing-chao, XIA Jing-hui, ZANG Chuan-zhen, HAO Min, LIANG Qing-huai. Influence of air gap on dynamic response of LIM metro system[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 10-18.
Citation: WEI Qing-chao, XIA Jing-hui, ZANG Chuan-zhen, HAO Min, LIANG Qing-huai. Influence of air gap on dynamic response of LIM metro system[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 10-18.

气隙对直线电机地铁系统动力响应的影响

基金项目: 

交通运输部科技项目 2011 318 315 1400

北京市自然科学基金项目 8172040

详细信息
    作者简介:

    魏庆朝(1957-), 男, 河北高邑人, 北京交通大学教授, 工学博士, 从事列车-线路动力学研究

  • 中图分类号: U211.5

Influence of air gap on dynamic response of LIM metro system

More Information
  • 摘要: 应用概率统计和频域分析理论, 分析了广州地铁4号线列车行驶过程中直线电机与感应板间动态气隙的实测数据; 建立了车辆-轨道垂横向耦合动力学模型, 研究了受气隙影响的垂向电磁力对车体和轨道系统的动力影响, 并与轨道随机不平顺对系统的动力影响进行了对比。研究结果表明: 92.2%的气隙在912mm的标准范围内, 且服从均值为10.5mm、标准差为1mm的正态分布; 感应板上表面与钢轨顶面的高度差是峰值气隙的决定因素, 通过气隙静态测量可确定线路的最不利气隙位置; 气隙的频域成分以小于0.1m-1的空间频率为主, 并存在0.2m-1的频率尖峰, 即气隙存在约为5m的周期成分; 垂向电磁力对车体加速度影响较小; 垂向电磁力可使轨道结构产生上升位移, 在同时存在轨道不平顺的情况下, 钢轨最大位移可达0.8mm, 轨道板最大位移可达1.0mm; 轨道不平顺是轨道结构持续振动的主要诱因, 垂向电磁力只会在开始作用于轨道结构的瞬间产生较大加速度, 垂向电磁力引起的轨道结构最大加速度大于轨道不平顺引起的最大加速度, 轨道不平顺和垂向电磁力的共同作用效果远大于单一因素的影响, 钢轨加速度可达2 200m·s-2, 轨道板加速度可达1 500m·s-2; 垂向电磁力对轮轨垂向力的最大影响在9kN以内; 可采用动态和静态检测相结合的方法测量气隙, 先应用列车上的动态检测设备测量出线路感应板超限点的大体位置, 然后进行人工精确测量, 维护后再次使用动态检测法进行气隙合格检验, 实现快速、精确、有效维护线路感应板的目的, 减小气隙对轨道结构垂向振动的影响。

     

  • 图  1  直线电机原理

    Figure  1.  LIM principle

    图  2  车辆和轨道系统

    Figure  2.  Vehicle-track system

    图  3  气隙测量装置

    Figure  3.  Air gap measuring device

    图  4  实测气隙

    Figure  4.  Measured air gap

    图  5  气隙分布特征

    Figure  5.  Distribution characteristics of air gap

    图  6  气隙功率谱密度

    Figure  6.  Air gap's power spectral density

    图  7  垂向电磁力与气隙关系

    Figure  7.  Relationship between vertical electromagnetic force and air gap

    图  8  动力学模型

    Figure  8.  Dynamics model

    图  9  气隙仿真曲线

    Figure  9.  Simulation curves of air gap

    图  10  钢轨垂向加速度

    Figure  10.  Track vertical accelerations

    图  11  轨道板垂向加速度

    Figure  11.  Vertical accelerations of track slab

    图  12  钢轨垂向位移

    Figure  12.  Track vertical displacements

    图  13  轨道板垂向位移

    Figure  13.  Vertical displacements of track slab

    图  14  车体垂向加速度

    Figure  14.  Vehicle vertical accelerations

    图  15  轮轨垂向力

    Figure  15.  Wheel/rail vertical forces

  • [1] FORTIN C. Dynamic curving simulation of forced-steering rail vehicles[D]. Kingston: Queen's University, 1984.
    [2] 王可丽. 直线电机地铁运载系统轨道关键技术的研究[D]. 北京: 北京交通大学, 2005.

    WANG Ke-li. Study of key technology of track drived by liner induction motor[D]. Beijing: Beijing Jiaotong University, 2005. (in Chinese).
    [3] 魏庆朝, 郑方圆, 冯雅薇, 等. 轨道不平顺对直线电机轮轨系统动力特性影响[J]. 铁道工程学报, 2017 (1): 36-40, 128. doi: 10.3969/j.issn.1006-2106.2017.01.008

    WEI Qing-chao, ZHENG Fang-yuan, FENG Ya-wei, et al. Influence of track irregularity on LIM wheel/rail system dynamic characteristics[J]. Journal of Railway Engineering Society, 2017 (1): 36-40, 128. (in Chinese). doi: 10.3969/j.issn.1006-2106.2017.01.008
    [4] 冯雅薇, 魏庆朝, 高亮, 等. 直线电机地铁车轨系统动力响应分析[J]. 工程力学, 2006, 23 (12): 159-164, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200612027.htm

    FENG Ya-wei, WEI Qing-chao, GAO Liang, et al. Dynamic analysis on vehicle-track interaction of linear metro system[J]. Engineering Mechanics, 2006, 23 (12): 159-164, 122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200612027.htm
    [5] 魏庆朝, 邓亚士, 冯雅薇. 电机悬挂方式对LIM地铁系统动力特性的影响研究[J]. 铁道工程学报, 2007 (11): 59-64. doi: 10.3969/j.issn.1006-2106.2007.11.013

    WEI Qing-chao, DENG Ya-shi, FENG Ya-wei. Study of suspension mode influences on LIM metro system dynamic characters[J]. Journal of Railway Engineering Society, 2007 (11): 59-64. (in Chinese). doi: 10.3969/j.issn.1006-2106.2007.11.013
    [6] 龙许友, 魏庆朝, 冯雅薇, 等. 轨道不平顺激励下直线电机车辆/轨道动力响应[J]. 交通运输工程学报, 2008, 8 (2): 9-13. doi: 10.3321/j.issn:1671-1637.2008.02.003

    LONG Xu-you, WEI Qing-chao, FENG Ya-wei, et al. Dynamic response of linear metro vehicle/track excited by track irregularity[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (2): 9-13. (in Chinese). doi: 10.3321/j.issn:1671-1637.2008.02.003
    [7] 赵金顺, 万传风, 张勇, 等. 直线电机轨道交通车线耦合模型的动力响应研究[J]. 铁道学报, 2006, 28 (5): 129-133. doi: 10.3321/j.issn:1001-8360.2006.05.024

    ZHAO Jin-shun, WAN Chuan-feng, ZHANG Yong, et al. Research on dynamic response of coupled model between vehicle and track for LIM track transportation[J]. Journal of the China Railway Society, 2006, 28 (5): 129-133. (in Chinese). doi: 10.3321/j.issn:1001-8360.2006.05.024
    [8] 郭薇薇, 夏禾. 直线电机列车作用下高架桥的动力响应分析[J]. 中国铁道科学, 2007, 28 (4): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200704013.htm

    GUO Wei-wei, XIA He. Dynamic response analysis of elevated bridge under linear induction motor train[J]. China Railway Science, 2007, 28 (4): 55-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200704013.htm
    [9] 刘彬彬, 曾京, 罗仁, 等. 直线感应电机车辆建模与动力学仿真[J]. 交通运输工程学报, 2009, 9 (5): 37-43, 61. http://transport.chd.edu.cn/article/id/200905007

    LIU Bin-bin, ZENG Jing, LUO Ren, et al. Modeling and dynamics simulation of vehicle with linear induction motor[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (5): 37-43, 61. (in Chinese). http://transport.chd.edu.cn/article/id/200905007
    [10] 刘彬彬, 罗仁, 曾京, 等. 地铁直线电机车辆曲线通过仿真[J]. 城市轨道交通研究, 2011 (2): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201102017.htm

    LIU Bin-bin, LUO Ren, ZENG Jing, et al. Simulation of curve negotiation of linear metro vehicle[J]. Urban Mass Transit, 2011 (2): 56-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201102017.htm
    [11] 熊嘉阳, 曹亚博, 吴磊, 等. 轮轨纵向几何不平顺对直线电机地铁车辆动态行为的影响[J]. 西南交通大学学报, 2015, 50 (6): 1074-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201506014.htm

    XIONG Jia-yang, CAO Ya-bo, WU Lei, et al. Effect of longitudinal geometric irregularities of wheel and rail on dynamic behavior of metro vehicle driven by linear motor[J]. Journal of Southwest Jiaotong University, 2015, 50 (6): 1074-1081. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201506014.htm
    [12] 宗凌潇, 马卫华, 罗世辉. 直线电机地铁车辆电机的隔振优化分析[J]. 机械工程学报, 2015, 51 (18): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201518016.htm

    ZONG Ling-xiao, MA Wei-hua, LUO Shi-hui. Optimization analysis of vibration isolation of linear motor of metro vehicles[J]. Journal of Mechanical Engineering, 2015, 51 (18): 119-125. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201518016.htm
    [13] 王晨, 罗世辉, 马卫华, 等. 考虑垂向电磁力的直线电机车辆的轮轨匹配关系研究[J]. 铁道机车车辆, 2015, 35 (2): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502029.htm

    WANG Chen, LUO Shi-hui, MA Wei-hua, et al. Study on wheel/rail matching relationship for the linear motor vehicle considering vertical electromagnetic force[J]. Railway Locomotive and Car, 2015, 35 (2): 110-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502029.htm
    [14] 刘高坤, 张江, 王树森, 等. 直线电机地铁车辆动力学性能仿真研究的新方法[J]. 机车电传动, 2015 (2): 103-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201502030.htm

    LIU Gao-kun, ZHANG Jiang, WANG Shu-sen, et al. New method of dynamics performance simulation for metro vehicle with linear motor[J]. Electric Drive for Locomotives, 2015 (2): 103-106. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201502030.htm
    [15] 刘高坤. 电磁力对直线电机地铁车辆曲线通过性能的影响[J]. 机车电传动, 2016 (5): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201605029.htm

    LIU Gao-kun. Influence of electromagnetic force on curve passing dynamic performance of LIM metro vehicle[J]. Electric Drive for Locomotives, 2016 (5): 85-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201605029.htm
    [16] 庄哲, 梁鑫, 林建辉, 等. 轴箱布置方式对地铁直线电机车辆动力学性能的影响[J]. 城市轨道交通研究, 2017 (9): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201709006.htm

    ZHUANG Zhe, LIANG Xin, LIN Jian-hui, et al. Influence of axle box arrangement on the dynamic performance of linear motor metro[J]. Urban Mass Transit, 2017 (9): 30-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201709006.htm
    [17] 戴焕云, 王欢, 林俊. 独立旋转车轮直线电机地铁车辆动力学分析[J]. 工程设计学报, 2009, 16 (1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ200901020.htm

    DAI Huan-yun, WANG Huan, LIN Jun. Dynamic analysis of linear motor vehicle with independent rotating wheels[J]. Journal of Engineering Design, 2009, 16 (1): 75-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ200901020.htm
    [18] 冯雅薇. 直线电机地铁车辆/轨道动力相互作用研究[D]. 北京: 北京交通大学, 2006.

    FENG Ya-wei. Study on the dynamic interaction of linear metro vehicle-track system[D]. Beijing: Beijing Jiaotong University, 2006. (in Chinese).
    [19] 罗仁, 邬平波, 刘彬彬. 地铁车辆直线电机恒隙控制仿真[J]. 交通运输工程学报, 2010, 10 (4): 50-57. http://transport.chd.edu.cn/article/id/201004009

    LUO Ren, WU Ping-bo, LIU Bin-bin. Constant air gap control simulation of linear induction motor of metro vehicle[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (4): 50-57. (in Chinese). http://transport.chd.edu.cn/article/id/201004009
    [20] KUO Chen-ming, HUANG Cheng-hao, CHEN Yi-yi. Vibration characteristics of floating slab track[J]. Journal of Sound and Vibration, 2008, 317 (3-5): 1017-1034.
  • 加载中
图(15)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  117
  • PDF下载量:  440
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-11
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回