留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加筋土边坡筋材拉力分布与分区

张琬 许强 陈建峰 薛剑峰

张琬, 许强, 陈建峰, 薛剑峰. 加筋土边坡筋材拉力分布与分区[J]. 交通运输工程学报, 2017, 17(6): 28-35.
引用本文: 张琬, 许强, 陈建峰, 薛剑峰. 加筋土边坡筋材拉力分布与分区[J]. 交通运输工程学报, 2017, 17(6): 28-35.
ZHANG Wan, XU Qiang, CHEN Jian-feng, XUE Jian-feng. Distribution and zoning of reinforcement loads for reinforced soil slopes[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 28-35.
Citation: ZHANG Wan, XU Qiang, CHEN Jian-feng, XUE Jian-feng. Distribution and zoning of reinforcement loads for reinforced soil slopes[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 28-35.

加筋土边坡筋材拉力分布与分区

基金项目: 

国家自然科学基金项目 41072200

国家自然科学基金项目 41572266

上海市浦江人才计划项目 14PJD032

地质灾害防治与地质环境保护国家重点实验室开放基金项目 SKLGP2015K005

详细信息
    作者简介:

    张琬(1990-), 女, 辽宁盘锦人, 同济大学工学博士研究生, 从事加筋土结构研究

    通讯作者:

    陈建峰(1972-), 男, 浙江宁波人, 同济大学教授, 工学博士

  • 中图分类号: U416.14

Distribution and zoning of reinforcement loads for reinforced soil slopes

More Information
  • 摘要: 基于离心模型试验成果, 建立了不同坡高和坡度加筋土边坡有限元模型, 采用强度折减法计算了边坡安全系数达到1.30时的筋材最大拉力; 通过归一化筋材拉力和边坡高度, 分析了坡高和坡度对筋材拉力沿坡高分布的影响, 并结合实际加筋土边坡筋材拉力实测数据, 探讨了筋材拉力分布与分区。分析结果表明: 数值计算的边坡滑动面位置和形态以及破坏时的安全系数与离心模型试验结果吻合; 边坡高度对筋材拉力分布影响不大, 而坡度对其影响显著, 随坡度增大, 筋材最大受力区域由边坡中部逐渐向底部转移; 从总体筋材拉力分布来看, 边坡上部1/3和下部2/3高度范围内各层筋材最大拉力之和分别占总加筋力的1/4和3/4, 边坡上部所需的筋材拉力较小, 若按假定筋材拉力沿坡高均匀分布的1区方法进行总加筋力的分配, 会使得加筋土边坡下部的安全度降低; 宜按坡度进行加筋土边坡总加筋力的分区, 对于坡度不大于1.0∶1的边坡, 总加筋力按高度相等的3个区分配, 顶、中、底区加筋力分别为总加筋力的1/3、1/2、1/6, 对于坡度为1.0∶1~2.0∶1的边坡, 以其上部1/3高度为顶区, 下部2/3高度作为底区, 顶、底区加筋力分别为总加筋力的1/5、4/5, 而对于坡度不小于2.0∶1的边坡, 也等分为3个区, 顶、中、底区加筋力分别为总加筋力的1/6、1/3、1/2;可收集更多的实测数据充实筋材拉力数据库, 应对加筋土边坡加筋力按坡度分区方法进行进一步的完善和验证。

     

  • 图  1  试验结束后的模型状态

    Figure  1.  Model state after test

    图  2  加筋土边坡数值模型

    Figure  2.  Numerical model of reinforced soil slope

    图  3  计算和试验的滑动面位置比较

    Figure  3.  Location comparison of computed and tested sliding surfaces

    图  4  坡度为1.0∶1时筋材拉力分布曲线

    Figure  4.  Distribution curves of reinforcement loads when slope angle is 1.0∶1

    图  5  坡度为1.5∶1时筋材拉力分布曲线

    Figure  5.  Distribution curves of reinforcement loads when slope angle is 1.5∶1

    图  6  坡度为2.0∶1时筋材拉力分布曲线

    Figure  6.  Distribution curves of reinforcement loads when slope angle is 2.0∶1

    图  7  坡度为3.0∶1时筋材拉力分布曲线

    Figure  7.  Distribution curves of reinforcement loads when slope angle is 3.0∶1

    图  8  坡高为13.5m时筋材拉力分布曲线

    Figure  8.  Distribution curves of reinforcement loads when slope height is 13.5m

    图  9  加筋土边坡总体筋材拉力分布

    Figure  9.  Overall reinforcement load distributions of reinforced soil slopes

    图  10  坡度不大于1.0∶1边坡的筋材拉力分布

    Figure  10.  Reinforcement load distributions of slopes with slope angles no more than 1.0∶1

    图  11  坡度为1.0∶1~2.0∶1边坡的筋材拉力分布

    Figure  11.  Reinforcement load distributions of slopes with slope angles between 1.0∶1and 2.0∶1

    图  12  坡度不小于2.0∶1边坡的筋材拉力分布

    Figure  12.  Reinforcement load distributions of slopes with slope angles no less than 2.0∶1

    表  1  填土及地基土参数

    Table  1.   Parameters of backfill and foundation

    下载: 导出CSV

    表  2  足尺加筋土边坡参数

    Table  2.   Parameters of full-scale reinforced soil slopes

    下载: 导出CSV

    表  3  加筋力按坡度分区

    Table  3.   Zoning of reinforcement tensile forces according to slope angles

    下载: 导出CSV
  • [1] MEHRJARDI G T, GHANBARI A, MEHDIZADEH H. Experimental study on the behaviour of geogrid-reinforced slopes with respect to aggregate size[J]. Geotextiles and Geomembranes, 2016, 44 (6): 862-871. doi: 10.1016/j.geotexmem.2016.06.006
    [2] NOORZAD R, MANAVIRAD E. Bearing capacity of two close strip footings on soft clay reinforced with geotextile[J]. Arabian Journal of Geosciences, 2014, 7 (2): 623-639. doi: 10.1007/s12517-012-0771-7
    [3] ZORNBERG J G, ARRIAGA F. Strain distribution within geosynthetic-reinforced slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129 (1): 32-45. doi: 10.1061/(ASCE)1090-0241(2003)129:1(32)
    [4] RAISINGHANI D V, VISWANADHAM B V S. Centrifuge model study on low permeable slope reinforced by hybrid geosynthetics[J]. Geotextiles and Geomembranes, 2011, 29 (6): 567-580. doi: 10.1016/j.geotexmem.2011.07.003
    [5] MEHDIPOUR I, GHAZAVI M, MOAYED R Z. Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect[J]. Geotextiles and Geomembranes, 2013, 37 (1): 23-34.
    [6] VISWANADHAM B V S, MAHAJAN R R. Centrifuge model tests on geotextile-reinforced slopes[J]. Geosynthetics International, 2007, 14 (6): 365-379. doi: 10.1680/gein.2007.14.6.365
    [7] TIWARI G, SAMADHIYA N K. Factors influencing the distribution of peak tension in geosynthetic reinforced soil slopes[J]. Indian Geotechnical Journal, 2016, 46 (1): 34-44. doi: 10.1007/s40098-015-0147-5
    [8] 苗英豪, 胡长顺. 土工格栅加筋陡边坡路堤位移特性的试验研究[J]. 中国公路学报, 2006, 19 (1): 47-52, 57. doi: 10.3321/j.issn:1001-7372.2006.01.010

    MIAO Ying-hao, HU Chang-shun. Research on displacement characteristics of geogrid reinforced embankment with steep slope[J]. China Journal of Highway and Transport, 2006, 19 (1): 47-52, 57. (in Chinese). doi: 10.3321/j.issn:1001-7372.2006.01.010
    [9] 朱根桥, 汪承志, 李霞. 高速公路加筋陡坡路基长期工作特性研究[J]. 岩土力学, 2012, 33 (10): 3103-3108, 3200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210037.htm

    ZHU Gen-qiao, WANG Cheng-zhi, LI Xia. Study of longterm performances of reinforced slope at expressway[J]. Rock and Soil Mechanics, 2012, 33 (10): 3103-3108, 3200. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210037.htm
    [10] 申超. 高速公路柔性生态加筋土挡墙现场监测与设计方法研究[D]. 长沙: 中南大学, 2012.

    SHEN Chao. The field monitoring and design method research of flexible eco-reinforced retaining wall in highway[D]. Changsha: Central South University, 2012. (in Chinese).
    [11] ZORNBERG J G, BARROWS R J, CHRISTOPHER B R, et al. Construction and instrumentation of a highway slope reinforced with high-strength geotextiles[C]//NAGS. Geosynthetics'95 Conference Proceedings-Volumn I. Nashville: NAGS, 1995: 13-27.
    [12] BATHURST R J, MIYATA Y, NERNHEIM A, et al. Refinement of K-stiffness method for geosynthetic-reinforced soil walls[J]. Geosynthetics International, 2008, 15 (4): 269-295. doi: 10.1680/gein.2008.15.4.269
    [13] ZORNBERG J G, JR E K. Prediction of the performance of a geogrid-reinforced slope founded on solid waste[J]. Soils and Foundations, 2001, 41 (6): 1-16. doi: 10.3208/sandf.41.6_1
    [14] FANNIN R J, HERMANN S. Performance data for a sloped reinforced soil wall[J]. Canadian Geotechnical Journal, 1990, 27 (5): 676-686. doi: 10.1139/t90-080
    [15] ZORNBERG J G, MITCHELL J K, SITAR N. Testing of reinforced slopes in a geotechnical centrifuge[J]. Geotechnical Testing Journal, 1997, 20 (4): 470-480. doi: 10.1520/GTJ10413J
    [16] ZORNBERG J G, SITAR N, MITCHELL J K. Limit equilibrium as basis for design of geosynthetic-reinforced slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (8): 684-698. doi: 10.1061/(ASCE)1090-0241(1998)124:8(684)
    [17] ZORNBERG J G, SITAR N, MITCHELL J K. Performance of geosynthetic reinforced slopes at failure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (8): 670-683. doi: 10.1061/(ASCE)1090-0241(1998)124:8(670)
    [18] YANG K H, ZORNBERG J G, WRIGHT S G. Numerical modeling of narrow MSE walls with extensible reinforcements[R]. Austin: University of Texas at Austin, 2008.
    [19] ALLEN T M, BATHURST R J, HOLTZ R D, et al. A new working stress method for prediction of reinforcement loads in geosynthetic walls[J]. Canadian Geotechnical Journal, 2003, 40 (5): 976-994. doi: 10.1139/t03-051
    [20] ALLEN T M, BATHURST R J. Design and performance of6.3-m-high, block-faced geogrid wall design using K-stiffness method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139 (2): 1-12.
    [21] ALLEN T M, BATHURST R J. Performance of a 11mhigh block-faced geogrid wall designed using the K-stiffness Method[J]. Canadian Geotechnical Journal, 2014, 51 (1): 16-29. doi: 10.1139/cgj-2013-0261
    [22] HATAMI K, BATHURST R J. Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions[J]. Canadian Geotechnical Journal, 2005, 42 (4): 1066-1085. doi: 10.1139/t05-040
    [23] HUANG Bing-quan, BATHURST R J, HATAMI K, et al. Influence of toe restraint on reinforced soil segmental walls[J]. Canadian Geotechnical Journal, 2010, 47 (8): 885-904. doi: 10.1139/T10-002
    [24] YU Yan, BATHURST R J, ALLEN T M. Numerical modeling of the SR-18geogrid reinforced modular block retaining walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142 (5): 1-13.
    [25] HATAMI K, BATHURST R J. Numerical model for reinforced soil segmental walls under surcharge loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (6): 673-684. doi: 10.1061/(ASCE)1090-0241(2006)132:6(673)
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  140
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-13
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回