留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用墙式整体桥台的无缝桥受力特征

朱伟庆 衡江峰 刘永健 王卫山

朱伟庆, 衡江峰, 刘永健, 王卫山. 采用墙式整体桥台的无缝桥受力特征[J]. 交通运输工程学报, 2017, 17(6): 36-45.
引用本文: 朱伟庆, 衡江峰, 刘永健, 王卫山. 采用墙式整体桥台的无缝桥受力特征[J]. 交通运输工程学报, 2017, 17(6): 36-45.
ZHU Wei-qing, HENG Jiang-feng, LIU Yong-jian, WANG Wei-shan. Mechanical characteristics of jointless bridge with wall-type integral abutment[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 36-45.
Citation: ZHU Wei-qing, HENG Jiang-feng, LIU Yong-jian, WANG Wei-shan. Mechanical characteristics of jointless bridge with wall-type integral abutment[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 36-45.

采用墙式整体桥台的无缝桥受力特征

基金项目: 

国家自然科学基金项目 51508027

陕西省交通运输厅科研项目 14-19K, 14-20K

详细信息
    作者简介:

    朱伟庆(1987-), 男, 湖南娄底人, 长安大学讲师, 工学博士, 从事桥梁工程研究

  • 中图分类号: U448.21

Mechanical characteristics of jointless bridge with wall-type integral abutment

More Information
  • 摘要: 建立了考虑桥台-土相互作用的墙式整体桥台无缝桥的空间有限元模型, 采用实测数据验证了模型的准确性; 分析了不同荷载工况下主梁与桥台的受力特征, 研究了温度、台后填土密实度与桥梁跨径对桥梁受力特征的影响。研究结果表明: 与同等跨径简支梁桥相比, 墙式整体桥台无缝桥受力最不利主梁的跨中弯矩降低了20%~40%, 跨中与梁端弯矩之和降低了约28%, 说明主梁内力分布比较均匀, 结构纵、横桥向整体性增强; 桥台顶部存在较大的弯矩和剪力, 桥台变形比较复杂; 墙式整体桥台无缝桥的内力和变形受温度作用的影响较为明显, 且梯度升温与整体降温在梁端产生正弯矩, 梯度降温与整体升温在梁端产生负弯矩, 因此, 设计过程中对于不同的构件应选用合适的荷载工况; 台后填土密实度由松散变化至密实时, 整体升温或降温作用下主梁梁端和跨中弯矩变化幅度小于5%, 桥台变形幅度小于9%, 说明台后填土密实度对主梁弯矩和桥台变形的影响较小; 当桥梁跨径由6m增加至13m时, 桥台顶部弯矩增加了1.781倍, 桥台内力随跨径的增大而快速增大, 因此, 在墙式整体桥台无缝桥梁的设计时, 建议最大跨径不超过10m, 以控制桥台在正常使用极限状态下的混凝土裂缝宽度。

     

  • 图  1  马家山桥总体布置(单位: cm)

    Figure  1.  Overall arrangement of Majiashan Bridge (unit: cm)

    图  2  主梁截面(单位: cm)

    Figure  2.  Cross sections of main girder (unit: cm)

    图  3  桥台构造(单位: cm)

    Figure  3.  Abutment construction (unit: cm)

    图  4  有限元模型

    Figure  4.  Finite element model

    图  5  台顶变形计算结果与实测数据

    Figure  5.  Calculation result and testing data of top deformation of abutment

    图  6  台底变形计算结果与实测数据

    Figure  6.  Calculation result and testing data of bottom deformation of abutment

    图  7  主梁1梁端弯矩计算结果与实测数据

    Figure  7.  Calculation result and testing data of end moment of main girder 1

    图  8  主梁4梁端弯矩计算结果与实测数据

    Figure  8.  Calculation result and testing data of end moment of main girder 4

    图  9  桥台内力沿高度分布

    Figure  9.  Internal force distributions along abutment height

    图  10  温度荷载作用下的主梁轴力

    Figure  10.  Axial force of main girder under temperature load

    图  11  温度荷载作用下的主梁梁端弯矩

    Figure  11.  Main girder end moment under temperature load

    图  12  温度荷载作用下的桥台变形

    Figure  12.  Deformations of abutment under temperature loads

    图  13  台后填土密实度对主梁轴力的影响曲线

    Figure  13.  Effect curves of backfill compactness on axial force of main girder

    图  14  台后填土密实度对主梁梁端弯矩的影响曲线

    Figure  14.  Effect curves of backfill compactness on moment of main girder end

    图  15  台后填土密实度对主梁跨中弯矩的影响曲线

    Figure  15.  Effect curves of backfill compactness on mid-span moment of main girder

    图  16  不同跨径时的裂缝宽度

    Figure  16.  Crack widths under different spans

    表  1  材料参数

    Table  1.   Parameters of materials

    下载: 导出CSV

    表  2  整体桥台无缝桥主梁内力

    Table  2.   Main girder internal forces of jointless bridge with integral abutment

    下载: 导出CSV

    表  3  简支梁桥主梁内力

    Table  3.   Main girder internal forces of simply supported girder bridge

    下载: 导出CSV

    表  4  填土性质

    Table  4.   Backfill properties

    下载: 导出CSV

    表  5  台后填土密实度对桥台变形的影响

    Table  5.   Effect of backfill compactness on abutment deformation

    下载: 导出CSV

    表  6  不同跨径时主梁与桥台内力

    Table  6.   Internal forces of main girder and abutment under different spans

    下载: 导出CSV
  • [1] KUNIN J, ALAMPALLI S. Integral abutment bridges: current practice in United States and Canada[J]. Journal of Performance of Constructed Facilities, 2000, 14 (3): 104-111. doi: 10.1061/(ASCE)0887-3828(2000)14:3(104)
    [2] AHN J H, YOON J H, KIM J H, et al. Evaluation on the behavior of abutment-pile connection in integral abutment bridge[J]. Journal of Constructional Steel Research, 2011, 67 (7): 1134-1148. doi: 10.1016/j.jcsr.2011.02.007
    [3] DICLELI M. Simplified model for computer-aided analysis of integral bridges[J]. Journal of Bridge Engineering, 2000, 5 (3): 240-248. doi: 10.1061/(ASCE)1084-0702(2000)5:3(240)
    [4] AROCKIASAMY M, BUTRIENG N, SIVAKUMAR M. State-of-the-art of integral abutment bridges: design and practice[J]. Journal of Bridge Engineering, 2004, 9 (5): 497-506. doi: 10.1061/(ASCE)1084-0702(2004)9:5(497)
    [5] KIM S H, YOON J H, KIM J H, et al. Structural details of steel girder-abutment joints in integral bridges: an experimental study[J]. Journal of Constructional Steel Research, 2012, 70: 190-212. doi: 10.1016/j.jcsr.2011.07.009
    [6] FELDMANN M, NAUMES J, PAK D, et al. Economic and durable design of composite bridges with integral abutments (INTAB+)[R]. Luxembourg: European Union, 2012.
    [7] VTrans Integral Abutment Committee. Integral Abutment Bridge Design Guidelines[M]. Montpelier: VTrans Integral Abutment Committee, 2008.
    [8] KONG B, CAI C S, KONG X. Field monitoring study of an integral abutment bridge supported by prestressed precast concrete piles on soft soils[J]. Engineering Structures, 2015, 104: 18-31. doi: 10.1016/j.engstruct.2015.09.004
    [9] CIVJAN S A, KALAYCI E, QUINN B H, et al. Observed integral abutment bridge substructure response[J]. Engineering Structures, 2013, 56: 1177-1191. doi: 10.1016/j.engstruct.2013.06.029
    [10] DICLELI M, ERHAN S. Effect of soil-bridge interaction on the magnitude of internal forces in integral abutment bridge components due to live load effects[J]. Engineering Structures, 2010, 32 (1): 129-145. doi: 10.1016/j.engstruct.2009.09.001
    [11] DICLELI M, ALBHAISI S M. Performance of abutmentbackfill system under thermal variations in integral bridges built on clay[J]. Engineering Structures, 2004, 26 (7): 949-962. doi: 10.1016/j.engstruct.2004.02.014
    [12] KIM W S, LAMAN J A. Integral abutment bridge response under thermal loading[J]. Engineering Structures, 2010, 32 (6): 1495-1508. doi: 10.1016/j.engstruct.2010.01.004
    [13] ZORDAN T, BRISEGHELLA B, LAN Cheng. Parametric and pushover analyses on integral abutment bridge[J]. Engineering Structures, 2011, 33 (2): 502-515. doi: 10.1016/j.engstruct.2010.11.009
    [14] KALAYCI E, CIVJAN S A, BREÑA S F. Parametric study on the thermal response of curved integral abutment bridges[J]. Engineering Structures, 2012, 43: 129-138. doi: 10.1016/j.engstruct.2012.05.007
    [15] KIM W S, LAMAN J A. Numerical analysis method for longterm behavior of integral abutment bridges[J]. Engineering Structures, 2010, 32 (8): 2247-2257. doi: 10.1016/j.engstruct.2010.03.027
    [16] DENG Yao-hua, PHARES B M, GREIMANN L, et al. Behavior of curved and skewed bridges with integral abutments[J]. Journal of Constructional Steel Research, 2015, 109: 115-136. doi: 10.1016/j.jcsr.2015.03.003
    [17] DICLELI M. A rational design approach for prestressed-concretegirder integral bridges[J]. Engineering Structures, 2000, 22 (3): 230-245. doi: 10.1016/S0141-0296(98)00080-7
    [18] ERHAN S, DICLELI M. Live load distribution equations for integral bridge substructures[J]. Engineering Structures, 2009, 31 (5): 1250-1264. doi: 10.1016/j.engstruct.2009.01.020
    [19] DICLELI M, ENG P, ALBHAISI S M. Maximum length of integral bridges supported on steel H-piles driven in sand[J]. Engineering Structures, 2003, 25 (12): 1491-1504. doi: 10.1016/S0141-0296(03)00116-0
    [20] DICLELI M, ALBHAISI S M. Estimation of length limits for integral bridges built on clay[J]. Journal of Bridge Engineering, 2004, 9 (6): 572-581. doi: 10.1061/(ASCE)1084-0702(2004)9:6(572)
    [21] DICLELI M, ALBHAISI S M. Analytical formulation of maximum length limits of integral bridges on cohesive soils[J]. Canadian Journal of Civil Engineering, 2005, 32 (4): 726-738. doi: 10.1139/l05-024
    [22] 金晓勤, 邵旭东. 整体式无缝桥梁的研究与应用[J]. 重庆交通大学学报, 2002, 21 (3): 7-10. doi: 10.3969/j.issn.1674-0696.2002.03.003

    JIN Xiao-qin, SHAO Xu-dong. Study and practice on integral abutment bridge[J]. Journal of Chongqing Jiaotong University, 2002, 21 (3): 7-10. (in Chinese). doi: 10.3969/j.issn.1674-0696.2002.03.003
    [23] 彭大文, 汪新惠, 洪锦祥. 无伸缩缝桥梁的动力特性研究[J]. 地震工程与工程振动, 2003, 23 (4): 95-99. doi: 10.3969/j.issn.1000-1301.2003.04.016

    PENG Da-wen, WANG Xin-hui, HONG Jin-xiang. Research on dynamic characteristics of jointless bridges[J]. Earthquake Engineering and Engineering Vibration, 2003, 23 (4): 95-99. (in Chinese). doi: 10.3969/j.issn.1000-1301.2003.04.016
    [24] 庄一舟, 樊争辉, 陈宝春. 整体式桥台桥梁的桥头搭板设计[J]. 世界桥梁, 2012, 40 (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201201001.htm

    ZHUANG Yi-zhou, FAN Zheng-hui, CHEN Bao-chun. Design of approach slab of integral abutment bridges[J]. World Bridges, 2012, 40 (1): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201201001.htm
    [25] 朱伟庆, 刘永健, 衡江峰, 等. 采用不同下部结构形式的整体式无缝桥受力特征[J]. 建筑科学与工程学报, 2017, 34 (1): 49-57. doi: 10.3969/j.issn.1673-2049.2017.01.007

    ZHU Wei-qing, LIU Yong-jian, HENG Jiang-feng, et al. Mechanical characteristics of integral abutment bridges with different substructures[J]. Journal of Architecture and Civil Engineering, 2017, 34 (1): 49-57. (in Chinese). doi: 10.3969/j.issn.1673-2049.2017.01.007
    [26] BOWLES J E. Elastic foundation settlements on sand deposits[J]. Journal of Geotechnical Engineering, 1987, 113 (8): 846-860. doi: 10.1061/(ASCE)0733-9410(1987)113:8(846)
    [27] BROMS B B, INGELSON I. Earth pressure against the abutments of a rigid frame bridge[J]. Géotechnique, 1971, 21 (1): 15-28. doi: 10.1680/geot.1971.21.1.15
    [28] DUNCAN J M, SCHAEFER V R. Finite element consolidation analysis of embankments[J]. Computers and Geotechnics, 1988, 6 (2): 77-93. doi: 10.1016/0266-352X(88)90075-4
    [29] ARSOY S, DUNCAN J M, BARKER R M. Behavior of a semi-integral bridge abutment under static and temperatureinduced cyclic loading[J]. Journal of Bridge Engineering, 2004, 9 (2): 193-199. doi: 10.1061/(ASCE)1084-0702(2004)9:2(193)
    [30] LEHANE B M, KEOGH D L, OBRIEN E J. Simplified model for restraining effects of backfill soil on integral bridges[J]. Computers and Structures, 1999, 73 (1-5): 303-313. doi: 10.1016/S0045-7949(98)00247-8
    [31] LAMAN J A, KIM W S. Monitoring of integral abutment bridges and design criteria development[R]. Harrisburg: The Pennsylvania Department of Transportation, 2009.
    [32] MATLOCK H, REESE L C. Generalized solutions for laterally loaded pile[C]//ASCE. A History of Progress: Selected U. S. Papers in Geotechnical Engineering. Reston: ASCE, 2002: .
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  94
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-03
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回