-
摘要: 分析了CNG公交客车的燃料消耗量测试参数, 确定了流量计的安装位置; 基于安装位置的固定气压范围, 考虑到驾驶节能技术水平与乘坐人数的影响, 提出了CNG质量流量的计算方法; 通过场地测试, 验证了CNG质量流量与燃料温度、燃料压力之间的非线性关系, 以及与环境温度、气瓶出口端压力的关系; 通过运营测试, 分析了CNG质量流量修正前后的差异, 并验证了测试方案的可行性。研究结果表明: 受测试气压的限制, 流量计唯一的串接位置是减压阀的出口端与低压燃气滤清器之间, CNG经过减压阀后的出口压力基本稳定在0.80~0.95 MPa之间; 在运营测试结果修正中, 驾驶节能技术的影响最大, 最大偏差可达4%, 受测公交线路的驾驶节能技术水平有87.6%的相对值介于0.9~1.1, 离散度较低; 当环境温度升速为4.0~4.3℃·h-1时, 燃料温度的变化速度基本波动于±0.61℃·h-1之间, 证明了燃料温度对环境温度的变化不敏感; 气瓶出口端压力与燃料压力没有必然联系, 其数值的减小不会影响CNG质量流量的变化; 在0.80~0.95 MPa的燃料压力下, 测试位置的CNG当量密度基本稳定在6.1kg·m-3, 连续测试30km后, CNG质量流量计算值与实测值误差小于5%;经对CNG质量流量修正后, 3辆测试车CNG质量流量的变化幅度分别为1.88%、-4.04%和1.71%, 因此, 采用CNG质量流量计算CNG消耗量更为精确。Abstract: The test parameters of fuel consumption of CNG bus were analyzed, and the suitable installation location of CNG flowmeter was determinated.Based on a fixed pressure range of CNG at installation location, the influence of driving energy saving technology level and passenger number was considered, and a calculation method of CNG mass flow was put forward.Field test was carried out to verify the nonlinear relationship among the mass flow, temperature and pressure of CNG, in addition, the relationship among the mass flow, the ambient temperature and the outlet pressure of cylinder.Based on the operational test, the difference of CNG mass flows before and after correction was analyzed, and the feasibility of testing method was verified.Research result shows that because of the limit of tested CNG pressure, the unique position ofCNG flowmeter is fixed between the outlet of pressure reducing valve and hypobaric gas filter, and CNG pressure decompresses to 0.80-0.95 MPa by pressure reducing valve.In the process of modifying operation test result, the driving energy saving technology level has greatest impact on the final test result of CNG mass flow, and the maximum tolerance may reach 4%.87.6% of the relative values for the driving factor are between 0.9 and 1.1, which reflects lower dispersion.When the rising speed of ambient temperature is between 4.0 ℃ ·h-1 and 4.3 ℃ ·h-1, the variance ratio of CNG temperature ranges from-0.61 ℃·h-1 to 0.61 ℃·h-1, which verifies that the CNG temperature is insensitive to the ambient temperature.Precisely speaking, there is no necessary connection between CNG pressure and cylinder outlet pressure, and the decrease of cylinder outlet pressure does not interfere with CNG mass flow.Under the CNG pressure of0.80-0.95 MPa, the CNG equivalent density at the testing position is stable at 6.1 kg·m-3.After continuous testing about 30 km, the deviations are less than 5% between the test result and computation result of CNG mass flow.After modifying CNG mass flow, the variations of CNG mass flows of 3 buses are 1.88%, -4.04% and 1.71%, respectively, so CNG mass flow can be used to accurately compute CNG consumption.
-
Key words:
- vehicle engineering /
- CNG bus /
- CNG flowmeter /
- fuel consumption /
- influencing parameters /
- modified calculation method
-
表 1 CNG流量计参数
Table 1. Parameters of CNG flowmeter
表 2 测试车辆的CNG实耗水平
Table 2. CNG consumption levels of test buses
表 3 线路运营参数
Table 3. Operating parameters of line
表 4 CNG参数
Table 4. CNG parameters
表 5 修正因子计算结果
Table 5. Calculation results of modified factors
-
[1] 刘生全, 马志义, 司利增, 等. 天然气汽车性能影响因素的试验[J]. 长安大学学报: 自然科学版, 2003, 23 (1): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301020.htmLIU Sheng-quan, MA Zhi-yi, SI Li-zeng, et al. Experiment of natural-gas-automobile performance[J]. Journal of Chang'an University: Natural Science Edition, 2003, 23 (1): 76-79. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301020.htm [2] 王延伟. 城市公交车驾驶节能技术的研究[D]. 西安: 长安大学, 2010.WANG Yan-wei. Study on energy-saving skills in driving city buses[D]. Xi'an: Chang'an University, 2010. (in Chinese). [3] KOSHY R Z, ARASAN V T. Influence of bus stops on flow characteristics of mixed traffic[J]. Journal of Transportation Engineering, 2005, 131 (8): 640-643. doi: 10.1061/(ASCE)0733-947X(2005)131:8(640) [4] 高卫民. 透过运营数据看AMT的价值[J]. 柴油机设计与制造, 2007, 15 (3): 40-44. doi: 10.3969/j.issn.1671-0614.2007.03.010GAO Wei-min. Values of AMT from operational data[J]. Design and Manufacture of Diesel Engine, 2007, 15 (3): 40-44. (in Chinese). doi: 10.3969/j.issn.1671-0614.2007.03.010 [5] 张万江. 城市公交车燃料消耗量测试工况研究[D]. 西安: 长安大学, 2012.ZHANG Wan-jiang. Research of fuel consumption testing cycle for city bus[D]. Xi'an: Chang'an University, 2012. (in Chinese). [6] 张明德. 营运客车燃料消耗量限值及测试方法的研究[D]. 重庆: 重庆大学, 2015.ZHANG Ming-de. Research on operational of bus fuel consumption limits and measurement methods[D]. Chongqing: Chongqing University, 2015. (in Chinese). [7] CAI S, BECHERIF M, HENNI A, et al. Processing of information gathered from hybrid or electrical vehicle for reduction of fuel consumption and gas emission[J]. Mediterranean Journal of Measurement and Control, 2011, 7 (2): 236-242. [8] 蔡祖戈, 杨国秀, 周道良, 等. 一种基于CAN总线的装载机油耗测试方法研究[J]. 建筑机械, 2016 (9): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201609027.htmCAI Zu-ge, YANG Guo-xiu, ZHOU Dao-liang, et al. Research on test method of fuel consumption of loader based on CAN bus[J]. Construction Machinery, 2016 (9): 68-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201609027.htm [9] 陈晓欢, 梁文娟, 黎明, 等. LNG城际客车运营过程中碳排放特性的研究[J]. 内燃机与动力装置, 2017, 34 (1): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNR201701014.htmCHEN Xiao-huan, LIANG Wen-juan, LI Ming, et al. Carbon emission characteristics of LNG bus operation[J]. Internal Combustion Engine and Powerplant, 2017, 34 (1): 65-69. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDNR201701014.htm [10] 骆玲. 营运天然气汽车燃料消耗量测量方法研究[D]. 西安: 长安大学, 2014.LUO Ling. Study on the fuel consumption measurement method of commercial natural gas ehicles[D]. Xi'an: Chang'an University, 2014. (in Chinese). [11] CHOI M, SONG J, PARK S. Modeling of the fuel injection and combustion process in a CNG direct injection engine[J]. Fuel, 2016, 179 (9): 168-178. [12] 陈曦. CAN总线实时性和可靠性若干问题的研究[D]. 天津: 天津大学, 2010.CHEN Xi. Research on real-time performance and reliability of CAN bus[D]. Tianjin: Tianjin University, 2010. (in Chinese). [13] 闫晟煜, 肖润谋. 西安市CNG燃料公交客车气耗测试行驶工况模拟[J]. 长安大学学报: 自然科学版, 2015, 35 (3): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201503022.htmYAN Sheng-yu, XIAO Run-mou. Development of driving cycle of Xi'an bus and CNG consumption verification[J]. Journal of Chang'an University: Natural Science Edition, 2015, 35 (3): 136-142. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201503022.htm [14] 姚春德, 杨广峰, 倪培勇, 等. 车用汽油机燃油空气加热器试验[J]. 中国公路学报, 2009, 22 (1): 116-119, 126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200901021.htmYAO Chun-de, YANG Guang-feng, NI Pei-yong, et al. Tests of air heater heated by fuel for gasoline engine of vehicle[J]. China Journal of Highway and Transport, 2009, 22 (1): 116-119, 126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200901021.htm [15] AMARI R, TONA P, ALAMIR M. Experimental evaluation of a hybrid MPC strategy for vehicle start-up with an Automated Manual Transmission[C]//IEEE. 2009European Control Conference. New York: IEEE, 2015: 4271-4277. [16] 韩国庆, 蔡凤田, 董金松. 载货汽车运行燃料消耗量计算方法研究[J]. 公路交通科技, 2009, 26 (9): 146-149. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200909029.htmHAN Guo-qing, CAI Feng-tian, DONG Jin-song. Study on calculation method for fuel consumption of trucks in operation[J]. Journal of Highway and Transportation on Research and Development, 2009, 26 (9): 146-149. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200909029.htm [17] 宣登殿, 李新伟, 王旭斌. 客车燃油消耗量计算方法[J]. 公路交通科技, 2011, 28 (9): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201109026.htmXUAN Deng-dian, LI Xin-wei, WANG Xu-bin. Calculation method of fuel consumption of passenger vehicle[J]. Journal of Highway and Transportation Research and Development, 2011, 28 (9): 153-158. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201109026.htm [18] 戴金辉. 单因素方差分析中异方差的检验与修正[J]. 统计与决策, 2017 (8): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201708007.htmDAI Jin-hui. Test and correction of heteroscedasticity in the single-factor variance analysis[J]. Statistics and Decision, 2017 (8): 23-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201708007.htm [19] TAN Jin-hui, WANG Yan, HAO Hai-bin, et al. Characteristics of flow fields in high-pressure pipes for CNG buses[J]. Natural Gas Industry, 2016, 36 (5): 92-97. [20] LEE S W, BAIK D S, ROGERS T, et al. A CFD study for spray characteristics of CNG fuel[J]. International Journal of Control and Automation, 2014, 7 (8): 221-232. [21] RAO B N, PREM KUMAR B S, KUMAR REDDY K V. Effect of CNG flow rate on the performance and emissions of a mullite-coated diesel engine under dual-fuel mode[J]. International Journal of Ambient Energy, 2016, 37 (6): 589-596. [22] 谭丕强, 李洁, 胡志远, 等. 柴油公交车燃用不同替代燃料的排放特性[J]. 交通运输工程学报, 2013, 13 (4): 63-69. http://transport.chd.edu.cn/article/id/201304010TAN Pi-qiang, LI Jie, HU Zhi-yuan, et al. Emission characteristics of diesel bus burning different alternative fuels[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (4): 63-69. (in Chinese). http://transport.chd.edu.cn/article/id/201304010 [23] MIKULSKI M, WIERZBICKI S, MIEJA M, et al. Effect of CNG in a fuel dose on the combustion process of a compression-ignition engine[J]. Transport, 2015, 30 (4): 162-171. [24] 闫晟煜. 公交客车变速器AMT的性能测试与适用性研究[D]. 西安: 长安大学, 2015.YAN Sheng-yu. Performance testing and applicability analyse on bus transmission: AMT[D]. Xi'an: Chang'an University, 2015. (in Chinese). [25] CHEN Qi-ping, SHU Hong-yu, WANG Kun. Study on powertrain system for CNG-electric hybrid city bus[J]. Journal of Mechanical Science and Technology, 2014, 28 (10): 4283-4289. [26] 王俊, 王庆年, 王鹏宇, 等. 混合动力车辆无离合器操作换挡动态协调控制方法[J]. 交通运输工程学报, 2014, 14 (5): 51-58. http://transport.chd.edu.cn/article/id/201405007WANG Jun, WANG Qing-nian, WANG Peng-yu, et al. Dynamic coordinated control method of gear shifting without clutch operation for hybrid electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (5): 51-58. (in Chinese). http://transport.chd.edu.cn/article/id/201405007