留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自营货车与公交车协同快件配送优化

贺韵竹 杨忠振

贺韵竹, 杨忠振. 自营货车与公交车协同快件配送优化[J]. 交通运输工程学报, 2017, 17(6): 97-103.
引用本文: 贺韵竹, 杨忠振. 自营货车与公交车协同快件配送优化[J]. 交通运输工程学报, 2017, 17(6): 97-103.
HE Yun-zhu, YANG Zhong-zhen. Optimization of express distribution by cooperatively using private trucks and buses[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 97-103.
Citation: HE Yun-zhu, YANG Zhong-zhen. Optimization of express distribution by cooperatively using private trucks and buses[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 97-103.

自营货车与公交车协同快件配送优化

基金项目: 

国家自然科学基金项目 71402013

中央高校基本科研业务费专项资金项目 3132016303

详细信息
    作者简介:

    贺韵竹(1992-), 女, 山东烟台人, 大连海事大学工学博士研究生, 从事交通运输规划与管理研究

    杨忠振(1964-), 男, 辽宁凌海人, 宁波大学教授, 工学博士

  • 中图分类号: U492.31

Optimization of express distribution by cooperatively using private trucks and buses

More Information
  • 摘要: 为了应对数量多、货件小、批次频、时效性高的城市快件配送需求, 提出了公交车与自营货车协同配送的运营模式, 构建了以快递运营总成本最低为目标的快件配送优化模型; 通过决策快递的配送批次、起运时间和运输路径, 优化了公交车与货车协同配送下的快件运输网络; 设计了蚁群算法求解模型; 基于大连市道路网与公交线网, 分别求解有97个需求点的协同配送和货车单独配送方案, 并比较了配送结果。分析结果表明: 在协同配送模式下, 总成本降低了9.5%, 货车的行驶距离减少了12.6%, 二氧化碳排放量由0.159t减少到0.139t, 未按时配送的需求点减少了26.2%, 总延误降低了57.7%;协同配送的单位时间惩罚成本适用范围为0.2~0.4元·min-1, 公交车最优单位配送价格为1.5元· (t·km) -1。可见, 在一定范围内, 协同运输模式的配送成本低, 配送准时性高, 产生的环境负荷少, 可以提供比货车单独配送更好的服务。

     

  • 图  1  单批货物走行路径

    Figure  1.  Path of single batch of goods

    图  2  部分配送路线

    Figure  2.  Partial distribution paths

    图  3  单位时间惩罚成本的敏感度分析

    Figure  3.  Sensitivity analysis of unit time penalty cost

    图  4  配送总成本随公交车单位配送成本的变化

    Figure  4.  Change of distribution total cost with bus unit distribtuion cost

    表  1  求解结果比较

    Table  1.   Solving results comparison

    下载: 导出CSV

    表  2  协同配送方案

    Table  2.   Collaborative distribution schemes

    下载: 导出CSV
  • [1] DANTZIG G B, RAMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6 (1): 80-91. doi: 10.1287/mnsc.6.1.80
    [2] GRANGIER P, GENDREAU M, LEHUDF, et al. An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization[J]. European Journal of Operational Research, 2016, 254 (1): 80-91. doi: 10.1016/j.ejor.2016.03.040
    [3] KASSEM S, CHEN Ming-yuan. A heuristic method for solving reverse logistics vehicle routing problems with time windows[J]. International Journal of Industrial and Systems Engineering, 2012, 12 (2): 207-222. doi: 10.1504/IJISE.2012.048861
    [4] 饶卫振, 金淳, 刘锋, 等. 一类动态车辆路径问题模型和两阶段算法[J]. 交通运输系统工程与信息, 2014, 15 (1): 159-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201501027.htm

    RAO Wei-zhen, JIN Chun, LIU Feng, et al. Model and twostage algorithm on dynamic vehicle routing problem[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 15 (1): 159-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201501027.htm
    [5] HIERMANN G, PUCHINGER J, ROPKE S, et al. The electric fleet size and mix vehicle routing problem with time windows and recharging stations[J]. European Journal of Operational Research, 2016, 252 (3): 995-1018. doi: 10.1016/j.ejor.2016.01.038
    [6] IMRAN A, LUIS M, OKDINAWATI L. A variable neighborhood search for the heterogeneous fixed fleet vehicle routing problem[J]. Jurnal Teknologi, 2016, 78 (9): 53-58.
    [7] DE LA CRUZ J J, PATERNINA-ARBOLEDA C D, CANTILLO V, et al. A two-pheromone trail ant colony system—Tabu search approach for the heterogeneous vehicle routing problem with time windows and multiple products[J]. Journal of Heuristics, 2013, 19 (2): 233-252. doi: 10.1007/s10732-011-9184-0
    [8] PENNA P H V, SUBRAMANIAN A, OCHI L S. An iterated local search heuristic for the heterogeneous fleet vehicle routing problem[J]. Journal of Heuristics, 2013, 19 (2): 201-232. doi: 10.1007/s10732-011-9186-y
    [9] KOC C, BEKTAS T, JABALI O, et al. A hybrid evolutionary algorithm for heterogeneous fleet vehicle routing problems with time windows[J]. Computers and Operations Research, 2015, 64 (1): 11-27.
    [10] SALHI S, IMRAN A, WASSAN N A. The multi-depot vehicle routing problem with heterogeneous vehicle fleet: formulation and a variable neighborhood search implementation[J]. Computers and Operations Research, 2014, 52 (2): 315-325.
    [11] MANCINI S. A real-life multi depot multi period vehicle routing problem with a heterogeneous fleet: formulation and adaptive large neighborhood search based matheuristic[J]. Transportation Research Part C: Emerging Technologies, 2016, 70 (1): 100-112.
    [12] KRITIKOS M N, IOANNOU G. The heterogeneous fleet vehicle routing problem with overloads and time windows[J]. International Journal of Production Economics, 2013, 144 (1): 68-75. doi: 10.1016/j.ijpe.2013.01.020
    [13] PACE S, TURKY A, MOSER I, et al. Distributing fibre boards: a practical application of the heterogeneous fleet vehicle routing problem with time windows and threedimensional loading constraints[J]. Procedia Computer Science, 2015, 51 (1): 2257-2266.
    [14] WEI Li-jun, ZHANG Zhen-zhen, LIM A. An adaptive variable neighborhood search for a heterogeneous fleet vehicle routing problem with three-dimensional loading constraints[J]. IEEE Computational Intelligence Magazine, 2014, 9 (4): 18-30. doi: 10.1109/MCI.2014.2350933
    [15] LIU Wan-yu, LIN Chun-cheng, CHIU Ching-ren, et al. Minimizing the carbon footprint for the time-dependent heterogeneous-fleet vehicle routing problem with alternative paths[J]. Sustainability, 2014, 6 (7): 4658-4684. doi: 10.3390/su6074658
    [16] VOLGENANT T, JONKER R. On some generalizations of the travelling-salesman problem[J]. Journal of the Operational Research Society, 1987, 38 (11): 1073-1079. doi: 10.1057/jors.1987.177
    [17] POTVIN J Y, NAUD M A. Tabu search with ejection chains for the vehicle routing problem with private fleet and common carrier[J]. Journal of the Operational Research Society, 2011, 62 (2): 326-336. doi: 10.1057/jors.2010.102
    [18] STENGER A, VIGO D, ENZ S, et al. An adaptive variable neighborhood search algorithm for a vehicle routing problem arising in small package shipping[J]. Transportation Science, 2013, 47 (1): 64-80. doi: 10.1287/trsc.1110.0396
    [19] VIDAL T, MACULAN N, OCHI L S, et al. Large neighborhoods with implicit customer selection for vehicle routing problems with profits[J]. Transportation Science, 2015, 50 (2): 720-734.
    [20] HUIJINK S, KANT G, PEETERS R. Determining which orders to outsource in the vehicle routing problem with order outsourcing[J]. CentER Discussion Paper, 2015 (49): 1-18.
    [21] GAHM C, BRABÄNDER C, TUMA A. Vehicle routing with private fleet, multiple common carriers offering volume discounts, and rental options[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 97 (1): 192-216.
    [22] EUCHI J. The vehicle routing problem with private fleet and multiple common carriers: solution with hybrid metaheuristic algorithm[J]. Vehicular Communications, 2017, 9 (3): 97-108.
    [23] WANG Jian, CHI Li-bing, HU Xiao-wei, et al. Urban traffic congestion pricing model with the consideration of carbon emissions cost[J]. Sustainability, 2014, 6 (2): 676-691. doi: 10.3390/su6020676
    [24] LAI Ming-yong, TONG Xiao-jiao. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search[J]. Journal of Industrial and Management Optimization, 2017, 8 (2): 469-484.
    [25] 于滨, 靳鹏欢, 杨忠振. 两阶段启发式算法求解带时间窗的多中心车辆路径问题[J]. 系统工程理论与实践, 2012, 32 (8): 1793-1800. doi: 10.3969/j.issn.1000-6788.2012.08.020

    YU Bin, JIN Peng-huan, YANG Zhong-zhen. Two-stage heuristic algorithm for multi-depot vehicle routing problem with time windows[J]. Systems Engineering—Theory and Practice, 2012, 32 (8): 1793-1800. (in Chinese). doi: 10.3969/j.issn.1000-6788.2012.08.020
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  568
  • HTML全文浏览量:  124
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-30
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回