留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

欠驱动船舶自适应迭代滑模轨迹跟踪控制

沈智鹏 代昌盛 张宁

沈智鹏, 代昌盛, 张宁. 欠驱动船舶自适应迭代滑模轨迹跟踪控制[J]. 交通运输工程学报, 2017, 17(6): 125-134.
引用本文: 沈智鹏, 代昌盛, 张宁. 欠驱动船舶自适应迭代滑模轨迹跟踪控制[J]. 交通运输工程学报, 2017, 17(6): 125-134.
SHEN Zhi-peng, DAI Chang-sheng, ZHANG Ning. Trajectory tracking control of underactuated ship based on adaptive iterative sliding mode[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 125-134.
Citation: SHEN Zhi-peng, DAI Chang-sheng, ZHANG Ning. Trajectory tracking control of underactuated ship based on adaptive iterative sliding mode[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 125-134.

欠驱动船舶自适应迭代滑模轨迹跟踪控制

基金项目: 

国家自然科学基金项目 51579024

中国博士后科学基金项目 2016M601293

辽宁省自然科学基金项目 201602072

中央高校基本科研业务费专项资金项目 3132016311

详细信息
    作者简介:

    沈智鹏(1977-), 男, 福建永定人, 大连海事大学教授, 工学博士, 从事船舶运动控制研究

  • 中图分类号: U661.33

Trajectory tracking control of underactuated ship based on adaptive iterative sliding mode

More Information
  • 摘要: 针对欠驱动船舶轨迹跟踪控制问题, 考虑系统存在未知参数和外界扰动, 提出了一种带强化学习的神经网络自适应迭代滑模控制方法; 利用轨迹跟踪的横向和纵向误差信息构造非线性迭代滑模面, 分别设计了船舶柴油机转速和舵角的神经网络迭代滑模控制器; 根据船舶柴油机转速和舵角的实时测量值, 计算了反映控制量抖振状态的强化学习信号, 在线优化了神经网络的结构和参数, 以抑制控制量的抖振, 进一步增强控制系统的自适应性; 建立了5446TEU集装箱船舶数学模型, 分别对圆轨迹和正弦轨迹进行了跟踪控制。仿真结果表明: 在风浪扰动下圆轨迹跟踪时, 与迭代滑模控制策略相比, 采用提出的控制策略250s左右能跟踪上目标轨迹, 速度提高约1倍, 最大跟踪偏航距离为250m, 误差减小约30%, 控制舵角在400s后基本平稳, 波动幅值约为2°, 舵角和柴油机转速的抖振变化幅值均减小了50%以上, 柴油机转速控制参数和舵角控制参数分别在38~45和3.3~3.9之间实现了自适应调节; 在正弦轨迹跟踪时, 与模糊迭代滑模控制策略相比, 采用提出的控制策略纵向跟踪平均误差小于20m, 减小了50%以上, 舵角抖振量平均幅值小于10°, 减小了60%以上, 柴油机转速控制参数和舵角控制参数分别在5.7~5.8和0.8~2.5之间实现了自适应调节。

     

  • 图  1  船舶轨迹跟踪误差

    Figure  1.  Ship trajectory tracking errors

    图  2  神经网络自适应迭代滑模控制结构

    Figure  2.  Neural network adaptive iterative sliding mode control structure

    图  3  圆轨迹跟踪曲线

    Figure  3.  Circular trajectory tracking curves

    图  4  圆轨迹的横向误差曲线

    Figure  4.  Lateral error curves of circular trajectory

    图  5  圆轨迹的纵向误差曲线

    Figure  5.  Vertical error curves of circular trajectory

    图  6  圆轨迹的舵角曲线

    Figure  6.  Rudder angle curves of circular trajectory

    图  7  圆轨迹的柴油机转速曲线

    Figure  7.  Diesel engine speed curves of circular trajectory

    图  8  圆轨迹的船舶速度曲线

    Figure  8.  Ship velocity curves of circular trajectory

    图  9  圆轨迹的转速控制参数k15曲线

    Figure  9.  Speed control parameter k15curve of circular trajectory

    图  10  圆轨迹的舵角控制参数k25曲线

    Figure  10.  Ruder angel control parameter k25curve of circular trajectory

    图  11  正弦轨迹跟踪曲线

    Figure  11.  Sinusoidal trajectory tracking curves

    图  12  正弦轨迹的横向误差曲线

    Figure  12.  Lateral error curves of sinusoidal trajectory

    图  13  正弦轨迹的纵向误差曲线

    Figure  13.  Vertical error curves of sinusoidal trajectory

    图  14  正弦轨迹的舵角曲线

    Figure  14.  Rudder angle curves of sinusoidal trajectory

    图  15  正弦轨迹的柴油机转速曲线

    Figure  15.  Diesel engine speed curves of sinusoidal trajectory

    图  16  正弦轨迹的船舶速度曲线

    Figure  16.  Ship velocity curves of sinusoidal trajectory

    图  17  正弦轨迹的柴油机转速控制参数k15曲线

    Figure  17.  Diesel engine speed control parameter k15curve of sinusoidal trajectory

    图  18  正弦轨迹的舵角控制参数k25曲线

    Figure  18.  Ruder angel control parameter k25curve of sinusoidal trajectory

  • [1] 郭晨, 汪洋, 孙富春, 等. 欠驱动水面船舶运动控制研究综述[J]. 控制与决策, 2009, 24 (3): 321-329. doi: 10.3321/j.issn:1001-0920.2009.03.001

    GUO Chen, WANG Yang, SUN Fu-chun, et al. Survey for motion control of underactuated surface vessels[J]. Control and Decision, 2009, 24 (3): 321-329. (in Chinese). doi: 10.3321/j.issn:1001-0920.2009.03.001
    [2] YANG Yang, DU Jia-lu, LIU Hong-bo, et al. A trajectory tracking robust controller of surface vessels with disturbance uncertainties[J]. IEEE Transactions on Control Systems Technology, 2014, 22 (4): 1511-1518. doi: 10.1109/TCST.2013.2281936
    [3] 段海庆, 朱齐丹. 基于反步自适应神经网络的船舶航迹控制[J]. 智能系统学报, 2012, 7 (3): 259-264. doi: 10.3969/j.issn.1673-4785.201205056

    DUAN Hai-qing, ZHU Qi-dan. Trajectory tracking control of ships based on an adaptive backstepping neural network[J]. CAAI Transactions on Intelligent Systems, 2012, 7 (3): 259-264. (in Chinese). doi: 10.3969/j.issn.1673-4785.201205056
    [4] 张伟, 滕延斌, 魏世琳, 等. 欠驱动UUV自适应RBF神经网络反步跟踪控制[J]. 哈尔滨工程大学学报, 2018, 39 (1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201801015.htm

    ZHANG Wei, TENG Yan-bin, WEI Shi-lin, et al. Underactuated UUV tracking control of adaptive RBF neural network and backstepping method[J]. Journal of Harbin Engineering University, 2018, 39 (1): 93-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201801015.htm
    [5] WONDERGEN M, LEFEBER E, PETTERSEN K, et al. Output feedback tracking of ships[J]. IEEE Transactions on Control Systems Technology, 2011, 19 (2): 442-448. doi: 10.1109/TCST.2010.2045654
    [6] ASHRAFIUON H, MUSKE K R, MCNINCH L C, et al. Sliding-mode tracking control of surface vessels[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (11): 4004-4012. doi: 10.1109/TIE.2008.2005933
    [7] YU Rui-ting, ZHU Qi-dan, XIA Gui-lin, et al. Sliding mode tracking control of an underactuated surface vessel[J]. IET Control Theory and Applications, 2012, 6 (3): 461-466. doi: 10.1049/iet-cta.2011.0176
    [8] 贾鹤鸣, 程相勤, 张利军, 等. 基于自适应Backstepping的欠驱动AUV三维航迹跟踪控制[J]. 控制与决策, 2012, 27 (5): 652-657, 664. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201205005.htm

    JIA He-ming, CHENG Xiang-qin, ZHANG Li-jun, et al. Three-dimensional path tracking control for underactuated AUV based on adaptive backstepping[J]. Control and Decision, 2012, 27 (5): 652-657, 664. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201205005.htm
    [9] 廖煜雷, 庄佳园, 李晔, 等. 欠驱动无人艇轨迹跟踪的滑模控制方法[J]. 应用科学学报, 2011, 29 (4): 428-434. doi: 10.3969/j.issn.0255-8297.2011.04.016

    LAO Yu-lei, ZHUANG Jia-yuan, LI Ye, et al. Sliding-mode trajectory tacking control for underactuated autonomous surface vehicle[J]. Journal of Applied Sciences, 2011, 29 (4): 428-434. (in Chinese). doi: 10.3969/j.issn.0255-8297.2011.04.016
    [10] 邢道奇, 张良欣. 船舶航迹跟踪的滑模控制[J]. 船舶, 2011, 22 (5): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ201105005.htm

    XING Dao-qi, ZHANG Liang-xin. Sliding-model control for trajectory tracking of surface vessels[J]. Ship and Boat, 2011, 22 (5): 10-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ201105005.htm
    [11] 徐健, 汪慢, 乔磊, 等. 欠驱动UUV三维轨迹跟踪的反步动态滑模控制[J]. 华中科技大学学报: 自然科学版, 2015, 43 (8): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201508023.htm

    XU Jian, WANG Man, QIAO Lei, et al. Backstepping dynamical sliding mode controller for three-dimensional trajectory tracking of underactuated UUV[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (8): 107-113. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201508023.htm
    [12] 廖煜雷, 万磊, 庄佳园. 欠驱动船路径跟踪的反演自适应动态滑模控制方法[J]. 中南大学学报: 自然科学版, 2012, 43 (7): 2655-2661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207029.htm

    LIAO Yu-lei, WAN Lei, ZHUANG Jia-yuan. Backstepping adaptive dynamical sliding mode control method for path following of underactuated surface vessel[J]. Journal of Central South University: Science and Technology, 2012, 43 (7): 2655-2661. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207029.htm
    [13] ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Trajectory tracking sliding mode control of underactuated AUVs[J]. Nonlinear Dynamics, 2016, 84 (2): 1079-1091.
    [14] HWANG C L, CHIANG C C, YEH Y W. Adaptive fuzzy hierarchical sliding-mode control for the trajectory tracking of uncertain underactuated nonlinear dynamic systems[J]. IEEE Transactions on Fuzzy Systems, 2014, 22 (2): 286-299.
    [15] RAYGOSA-BARHONA R, PARRA-VEGA V, OLGUIN-DIAZ E, et al. A model-freebackstepping with integral sliding mode control for underactuated ROVs[C]//IEEE. 8th International Conference on Electrical Engineering, Computing Science and Automatic Control. New York: IEEE, 2011: 1-7.
    [16] LIU Chun-mei, YEH Chih-ping, CHEN Wen. Robust iterative learning control for output tracking via chatteringfree sliding mode control technique[C]//IEEE. 8th IEEE International Conference on Control and Automation. New York: IEEE, 2010: 241-246.
    [17] ZHAO Guo-liang, ZHAO Can, WANG De-gang. Tensor product model transformation based integral sliding mode control with reinforcement learning strategy[C]//IEEE. Proceedings of the 33rd Chinese Control Conference. New York: IEEE, 2014: 77-82.
    [18] HE Xiong-xiong, ZHUANG Hua-liang, ZHUANG Duan, et al. Pulse neural network-based adaptive iterative learning control for uncertain robots[J]. Neural Computing and Applications, 2013, 23 (7/8): 1885-1890.
    [19] HUANG Zheng-yu, EDWARDS R M, LEE K Y. Fuzzyadapted recursive sliding-mode controller design for a nuclear power plant control[J]. IEEE Transactions on Nuclear Science, 2004, 51 (1): 256-266.
    [20] 贾鹤鸣, 张利军, 程相勤, 等. 基于非线性迭代滑模的欠驱动UUV三维航迹跟踪控制[J]. 自动化学报, 2012, 38 (2): 308-314. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201202019.htm

    JIA He-ming, ZHANG Li-jun, CHENG Xiang-qin, et al. Three-dimensional path following control for an underactuated UUV based on nonlinear iterative sliding mode[J]. Acta Automatica Sinica, 2012, 38 (2): 308-314. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201202019.htm
    [21] 卜仁祥, 刘正江, 李铁山. 迭代滑模增量反馈及在船舶航向控制中的应用[J]. 哈尔滨工程大学学报, 2007, 28 (3): 268-272. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200703004.htm

    BU Ren-xiang, LIU Zheng-jiang, LI Tie-shan. Iterative sliding mode based increment feedback control and its application to ship autopilot[J]. Journal of Harbin Engineering University, 2007, 28 (3): 268-272. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200703004.htm
    [22] 边信黔, 程相勤, 贾鹤鸣, 等. 基于迭代滑模增量反馈的欠驱动AUV地形跟踪控制[J]. 控制与决策, 2011, 26 (2): 289-292, 296. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201102025.htm

    BIAN Xin-qian, CHENG Xiang-qin, JIA He-ming, et al. A bottom-following controller for underactuated AUV based on iterative sliding and increment feedback[J]. Control and Decision, 2011, 26 (2): 289-292, 296. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201102025.htm
    [23] 沈智鹏, 姜仲昊, 王国峰, 等. 风帆助航船舶运动的模糊自适应迭代滑模控制[J]. 哈尔滨工程大学学报, 2016, 37 (5): 634-639. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201605002.htm

    SHEN Zhi-peng, JIANG Zhong-hao, WANG Guo-feng, et al. Fuzzy-adapted iterative sliding mode control for sail-assisted ship motion[J]. Journal of Harbin Engineering University, 2016, 37 (5): 634-639. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201605002.htm
    [24] 沈智鹏, 代昌盛. 欠驱动船舶路径跟踪的强化学习迭代滑模控制[J]. 哈尔滨工程大学学报, 2017, 38 (5): 697-704. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201705007.htm

    SHEN Zhi-peng, DAI Chang-sheng. Iterative sliding mode control based on reinforced learning and used for path tracking of under-actuated ship[J]. Journal of Harbin Engineering University, 2017, 38 (5): 697-704. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201705007.htm
    [25] SHEN Zhi-peng, GUO Chen, ZHANG Ning. A general fuzzified CMAC based reinforcement learning control for ship steering using recursive least-squares algorithm[J]. Neurocomputing, 2010, 73 (4-6): 700-706.
  • 加载中
图(18)
计量
  • 文章访问数:  660
  • HTML全文浏览量:  222
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-21
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回