留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中高速重型半挂车适时模式切换的集成控制策略

聂枝根 王万琼 王超 宗长富

聂枝根, 王万琼, 王超, 宗长富. 中高速重型半挂车适时模式切换的集成控制策略[J]. 交通运输工程学报, 2017, 17(6): 135-149.
引用本文: 聂枝根, 王万琼, 王超, 宗长富. 中高速重型半挂车适时模式切换的集成控制策略[J]. 交通运输工程学报, 2017, 17(6): 135-149.
NIE Zhi-gen, WANG Wan-qiong, WANG Chao, ZONG Zhang-fu. Integrated control strategy of articulated heavy vehicle based on timely mode switching under medium/high speed conditions[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 135-149.
Citation: NIE Zhi-gen, WANG Wan-qiong, WANG Chao, ZONG Zhang-fu. Integrated control strategy of articulated heavy vehicle based on timely mode switching under medium/high speed conditions[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 135-149.

中高速重型半挂车适时模式切换的集成控制策略

基金项目: 

国家自然科学基金项目 51705225

云南省引进人才科研启动基金项目 KKSY201602009

详细信息
    作者简介:

    聂枝根(1983-), 男, 江西高安人, 昆明理工大学讲师, 工学博士, 从事车辆动力学研究

  • 中图分类号: U469.53

Integrated control strategy of articulated heavy vehicle based on timely mode switching under medium/high speed conditions

More Information
  • 摘要: 在中高速工况下, 建立了重型半挂车五自由度简化模型, 提出了适时模式切换的集成控制策略; 集成控制策略由差动制动和挂车主动转向2个控制系统集成, 针对中高速重型半挂车工况变化, 适时切换集成控制策略的控制模式, 实现中高速重型半挂车各工况精准控制; 采用遗传粒子群算法, 设计了集成控制策略各控制模式对应优化函数, 优化了各控制模式的权重系数, 融合与协调了集成控制策略多个单一控制策略, 以实现各控制模式重型半挂车最优控制; 分析了重型半挂车多个控制策略的仿真结果, 并搭建了硬件在环试验台, 验证了集成控制策略的控制效果。研究结果表明: 在普通工况下, 集成控制策略与挂车主动转向控制策略的控制效果类似, 优于差动制动控制策略的控制效果, 而在极限工况下, 控制能力强于挂车主动转向控制策略和差动制动控制策略; 采用集成控制策略增强了中高速普通工况重型半挂车横摆和折叠稳定性, 牵引车质心侧偏角、挂车横摆角速度和挂车质心侧偏角最大值分别改善了27.46%、53.19%和91.60%, 铰接角最大值改善了29.07%;提升了中高速普通工况重型半挂车路径跟随能力, 挂车后端路径最大偏差改善了95.48%;提高了中高速普通工况的重型半挂车侧倾能力, 牵引车侧倾角、挂车侧倾角、挂车侧向加速度最大值分别改善了11.15%、10.34%和4.08%;避免了极限工况重型半挂车侧翻, 且控制牵引车和挂车侧倾角在25°左右的稳定范围内。

     

  • 图  1  简化模型

    Figure  1.  Simplified model

    图  2  集成控制策略

    Figure  2.  Integrated control strategy

    图  3  路径偏差计算

    Figure  3.  Calculation of path deviation

    图  4  坐标系转换后的偏差计算

    Figure  4.  Deviation calculation after coordinate transformation

    图  5  单移线工况

    Figure  5.  Single lane change condition

    图  6  低附单移线工况牵引车质心侧偏角仿真结果对比

    Figure  6.  Simulation result comparison of slip angle for center of mass of tractor under low-adhesion single-lane change condition

    图  7  低附单移线工况挂车横摆角速度仿真结果对比

    Figure  7.  Simulation result comparison of yaw velocity of trailer under low-adhesion single-lane change condition

    图  8  低附单移线工况挂车质心侧偏角仿真结果对比

    Figure  8.  Simulation result comparison of slip angle for center of mass of trailer under low-adhesion single-lane change condition

    图  9  低附单移线工况铰接角仿真结果对比

    Figure  9.  Simulation result comparison of hitch angle under low-adhesion single-lane change condition

    图  10  低附单移线工况牵引车侧倾角仿真结果对比

    Figure  10.  Simulation result comparison of roll angle of tractor under low-adhesion single-lane change condition

    图  11  低附单移线工况挂车侧倾角仿真结果对比

    Figure  11.  Simulation result comparison of roll angle of trailer under low-adhesion single-lane change condition

    图  12  低附单移线工况挂车侧向加速度仿真结果对比

    Figure  12.  Simulation result comparison of lateral acceleration of trailer under low-adhesion single-lane change condition

    图  13  高附双移线工况牵引车侧倾角仿真结果对比

    Figure  13.  Simulation result comparison of roll angle of tractor under high-adhesion double-lane change condition

    图  14  高附双移线工况挂车侧倾角仿真结果对比

    Figure  14.  Simulation result comparison of roll angle of trailer under high-adhesion double-lane change condition

    图  15  高附双移线工况牵引车侧向加速度仿真结果对比

    Figure  15.  Simulation result comparison of lateral acceleration of tractor under high-adhesion double-lane change condition

    图  16  高附双移线工况挂车侧向加速度仿真结果对比

    Figure  16.  Simulation result comparison of lateral acceleration of trailer under high-adhesion double-lane change condition

    图  17  高附双移线工况挂车横摆角速度仿真结果对比

    Figure  17.  Simulation result comparison of yaw velocity of trailer under high-adhesion double-lane change condition

    图  18  高附双移线工况挂车质心侧偏角仿真结果对比

    Figure  18.  Simulation result comparison of slip angle for center of mass of trailer under high-adhesion double-lane change condition

    图  19  试验台

    Figure  19.  Test bench

    图  20  低附单移线工况制动压力

    Figure  20.  Brake pressures under low-adhesion single-lane change condition

    图  21  低附单移线工况主动转向角试验结果对比

    Figure  21.  Experiment result comparison of active steering angle under low-adhesion single-lane change condition

    图  22  低附单移线工况牵引车质心侧偏角试验结果对比

    Figure  22.  Experiment result comparison of slip angle of tractor under low-adhesion single-lane change condition

    图  23  低附单移线工况挂车横摆角速度试验结果对比

    Figure  23.  Experiment result comparison of yaw velocity of trailer under low-adhesion single-lane change condition

    图  24  低附单移线工况挂车质心侧偏角试验结果对比

    Figure  24.  Experiment result comparison of slip angle of center of mass for trailer under low-adhesion single-lane change condition

    图  25  低附单移线工况侧向位移试验结果对比

    Figure  25.  Experiment result comparison of lateral displacement under low-adhesion single-lane change condition

    图  26  低附单移线工况铰接角试验结果对比

    Figure  26.  Experiment result comparison of hitch angle under low-adhesion single-lane change condition

    图  27  低附单移线工况牵引车侧倾角试验结果对比

    Figure  27.  Experiment result comparison of roll angle of tractor under low-adhesion single-lane change condition

    图  28  低附单移线工况挂车侧倾角试验结果对比

    Figure  28.  Experiment result comparison of roll angle of trailer under low-adhesion single-lane change condition

    图  29  低附单移线工况挂车侧向加速度试验结果对比

    Figure  29.  Experiment result comparison of lateral acceleration of trailer under low-adhesion single-lane change condition

    图  30  高附双移线工况牵引车侧倾角试验结果对比

    Figure  30.  Experiment result comparison of roll angle of tractor under high-adhesion double-lane change condition

    图  31  高附双移线工况挂车侧倾角试验结果对比

    Figure  31.  Experiment result comparison of roll angle of trailer under high-adhesion double-lane change condition

    图  32  高附双移线工况切换标志

    Figure  32.  Switching flags under high-adhesion double-lane change condition

    图  33  高附双移线工况主动转向角度

    Figure  33.  Active steering angles under high-adhesion double-lane change condition

    图  34  高附双移线工况牵引车前轴制动压力

    Figure  34.  Brake pressures of front axle for tractor under high-adhesion double-lane change condition

    图  35  高附双移线工况牵引车后轴制动压力

    Figure  35.  Brake pressures of rear axle for tractor under high-adhesion double-lane change condition

    图  36  高附双移线工况挂车制动压力

    Figure  36.  Brake pressures of trailer under high-adhesion double-lane change condition

    表  1  低附单移线工况仿真结果

    Table  1.   Simulation result under low-adhesion single-lane change condition

    下载: 导出CSV

    表  2  低附单移线工况试验结果

    Table  2.   Test result under low-adhesion single-lane change condition

    下载: 导出CSV
  • [1] 宗长富, 聂枝根张振. 厢式半挂车简化模型参数辨识研究[J]. 中国公路学报, 2014, 27 (4): 112-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201404018.htm

    ZONG Chang-fu, NIE Zhi-gen, ZHANG Zhen. Parameters Identification for simplified model of container semi-trailer[J]. China Journal of Highway and Transport, 2014, 27 (4): 112-120. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201404018.htm
    [2] OBEROI D. Enhancing roll stability and directional performance of articulated heavy vehicles based on anti-roll control and design optimization[D]. Oshawa: University of Ontario Institute of Technology, 2011.
    [3] TRIGELL A S, ROTHHMEL M, PAUWELUSSEN J, et al. Advanced vehicle dynamics of heavy trucks with the perspective of road safety[J]. Vehicle System Dynamics, 2017, 55 (10): 1572-1617. doi: 10.1080/00423114.2017.1319964
    [4] KIM Y C, YUN K H, MIN K D. Automatic guidance control of articulated all-wheel-steered vehicle[J]. Vehicle System Dynamics, 2014, 52 (4): 456-474. doi: 10.1080/00423114.2013.831458
    [5] DAL POGGETTO V F, SERPA A L. Vehicle rollover avoidance by application of gain-scheduled LQR controllers using state observers[J]. Vehicle System Dynamics, 2016, 54 (2): 191-209. doi: 10.1080/00423114.2015.1125005
    [6] KHARRAZI S, LIDBERG M, FREDRIKSSON J. Robustness analysis of a steering-based control strategy for improved lateral performance of a truck-dolly-semitrailer[J]. International Journal of Heavy Vehicle Systems, 2015, 22 (1): 1-20. doi: 10.1504/IJHVS.2015.070414
    [7] OREH S H T, KAZEMI R, AZADI S. A new method for off-tracking eliminating in a tractor semi-trailer[J]. International Journal of Heavy Vehicle Systems, 2016, 23 (2): 107-130. doi: 10.1504/IJHVS.2016.075490
    [8] WANG Qiu-shi, HE Yu-ping. A study on single lane-change maneuvers for determining rearward amplification of multitrailer articulated heavy vehicles with active trailer steering systems[J]. Vehicle System Dynamics, 2016, 54 (1): 102-123. doi: 10.1080/00423114.2015.1123280
    [9] JUJNOVICH B A, CEBON D. Path-following steering control for articulated vehicles[J]. Journal of Dynamic Systems, Measurement and Control, 2013, 135 (3): 1-15.
    [10] CHENG C, CEBON D. Improving roll stability of articulated heavy vehicles using active semi-trailer steering[J]. Vehicle System Dynamics, 2008, 46 (S): 373-388.
    [11] VU V T, SENAME O, DUGARD L, et al. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators[J]. Vehicle System Dynamics, 2017, 55 (9): 1405-1429. doi: 10.1080/00423114.2017.1317822
    [12] 聂枝根, 宗长富, 杨秀建, 等. 模式切换的中高速重型半挂车挂车主动转向控制策略[J]. 重庆大学学报, 2017, 40 (8): 78-89. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201708010.htm

    NIE Zhi-gen, ZONG Chang-fu, YANG Xiu-jian, et al. The active trailer strategy for articulated heavy vehicles based on modes switching in medium/high speed conditions[J]. Journal of Chongqing University, 2017, 40 (8): 78-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201708010.htm
    [13] MORRISON G, CEBON D. Combined emergency braking and turning of articulated heavy vehicles[J]. Vehicle System Dynamics, 2017, 55 (5): 725-749. doi: 10.1080/00423114.2016.1278077
    [14] GOODARZI A, GHAJAR M, BAGHESTANI A, et al. Integrated yaw and roll moments control for articulated vehicles[C]//SAE International. 2009 Commercial Vehicle Engineering Congress and Exhibition. Warrendale: SAE International, 2009: 1-12.
    [15] MOUSAVINEJAD E, HAN Qing-long, YANG Fu-wen, et al. Integrated control of ground vehicles dynamics via advanced terminal sliding mode control[J]. Vehicle System Dynamics, 2017, 55 (2): 268-294. doi: 10.1080/00423114.2016.1256489
    [16] YAKUB F, MORI Y. Heavy vehicle stability and rollover prevention via switching model predictive control[J]. International Journal of Innovative Computing, Information and Control, 2015, 11 (5): 1751-1764.
    [17] ISLAM M. Rollover parallel design optimization of multi-trailer articulated heavy vehicles with active safety systems[D]. Oshawa: University of Ontario Institute of Technology, 2013.
    [18] 聂枝根. 基于后轴主动转向与差动制动集成的重型半挂车控制策略研究[D]. 长春: 吉林大学, 2014.

    NIE Zhi-gen. Research on integrated control strategy combined differential braking with active rear axle steering for articulated vehicle[D]. Changchun: Jilin University, 2014. (in Chinese).
    [19] CHENG Cai-zhen, ROEBUCK R, ODHAMS A, et al. Highspeed optimal steering of a tractor-semitrailer[J]. Vehicle System Dynamics, 2011, 49 (4): 561-593. doi: 10.1080/00423111003615212
    [20] 聂枝根, 宗长富. 重型半挂车简化模型参数辨识研究[J]. 汽车工程, 2015, 37 (6): 622-630. doi: 10.3969/j.issn.1000-680X.2015.06.003

    NIE Zhi-gen, ZONG Chang-fu. A study on the parameters identification of simplified models for articulated heavy vehicles[J]. Automotive Engineering, 2015, 37 (6): 622-630. (in Chinese). doi: 10.3969/j.issn.1000-680X.2015.06.003
    [21] LI Xin, SHAMSI P. Model predictive current control of switched reluctance motors with inductance auto-calibration[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (6): 3934-3940. doi: 10.1109/TIE.2015.2497301
    [22] SHARP R S, VALTETSIOTIS V. Optimal preview car steering control[J]. Vehicle System Dynamics, 2001, 35 (S): 101-117.
    [23] ISLAM M, DING Xue-jun, HE Yu-ping. A closed-loop dynamic simulation-based design method for articulated heavy vehicles with active trailer steering systems[J]. Vehicle System Dynamics, 2012, 50 (5): 675-697. doi: 10.1080/00423114.2011.622904
    [24] HE Yu-ping, ISLAM M. An automated design method for active trailer steering systems of articulated heavy vehicles[J]. Journal of Mechanical Design, 2012, 134 (4): 1-15.
    [25] YOON J, CHO W, KANG Ju-yong, et al. Design and evaluation of a unified chassis control system for rollover prevention and vehicle stability improvement on a virtual test track[J]. Control Engineering Practice, 2010, 18 (6): 585-597.
    [26] NAL K, GVENC L, LABS M. Real-time hardware-inthe-loop simulation of time to rollover warning for heavy commercial vehicles[J]. International Journal of Heavy Vehicle Systems, 2014, 21 (2): .
  • 加载中
图(36) / 表(2)
计量
  • 文章访问数:  506
  • HTML全文浏览量:  188
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-10
  • 刊出日期:  2017-12-25

目录

    /

    返回文章
    返回