Mode transition coordination control of hybrid electric bus based on multiple controllers
-
摘要: 分析了并联混合动力客车由纯电动驱动模式向发动机单独驱动模式切换的过程, 借鉴了切换系统的基本思想, 提出混合动力客车模式切换多控制器的协调控制策略; 按照离合器的状态将驱动模式切换过程划分为3阶段, 根据车辆运行所处的不同阶段, 设计了Fuzzy-PI控制器与滑模控制器对发动机与驱动电机进行动力协调控制; 以冲击度作为评价模式切换品质的量化指标, 在MATLAB/Simulink/Stateflow中建立了并联混合动力系统仿真模型, 搭建了整车试验平台, 分析了协调控制的效果。仿真结果表明: 未采用协调控制策略时, 在离合器滑摩阶段, 由于离合器两端转速差较大, 其传递摩擦转矩会产生约189N·m的扰动, 导致车速骤降, 反向的最大冲击度约为41.2m·s-3; 采用协调控制策略后, 在整个模式切换过程中冲击度变化范围为-34m·s-3, 保证了动力传动系统输出的平稳性, 有效地抑制了驱动模式切换过程中对车辆所造成的冲击; 在一完整的驱动模式切换中, 实际车速的偏差小于5%, 冲击度控制在-57m·s-3, 试验结果与仿真结果基本一致, 证明了该策略的可行性与有效性。Abstract: The switching process from pure electric driving mode to engine driving mode of parallel hybrid electric bus was analyzed, the basic idea of switching system was considered, and the mode transition coordination control strategy of hybrid electric bus based on multiple controllers was proposed.The driving mode transition was divided into three phases in terms of clutch states.According to the vehicle operating status, fuzzy-PI controller and sliding mode controller were constructed to coordinate the engine and driving electric motor in the phases.The shock degree was used as quantitative index to assess the quality of mode transition.The simulation model of parallel hybrid electric bus was built in MATLAB/Simulink/Stateflow platform.The vehicle experiment platform was constructed, and the coordinated control effect was analyzed.Simulation result shows that when the coordinated control strategy is not adopted, the friction torque of clutch in slipping stage generates a reverse impact of 189 N·m due to the large speed difference between the two sides of clutch, which results in the sharp decline of vehicle velocity and the maximum reverse shock degree of 41.2 m·s-3.When the coordinatedcontrol strategy is used, the variation of shock degree is -3-4 m·s-3 in entire mode transition.So the output stability of power transmission system is assured, and the impact caused by the switching of driving mode is restrained effectively.In an entire driving mode transition, the experiment result is basically consistent with the simulation result, the error of vehicle velocity is less than 5%, and the variation of shock degree is-5-7 m·s-3, so the strategy is feasible and effective.
-
表 1 仿真参数
Table 1. Simulation parameters
-
[1] ZENG Xiao-hua, YANG Nan-nan, WANG Jun-nian, et al. Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 785-798. doi: 10.1016/j.ymssp.2014.12.016 [2] SERRAO L, ONORI S, RIZZONI G. A comparative analysis of energy management strategies for hybrid electric vehicles[J]. Journal of Dynamic Systems Measurement and Control, 2011, 133 (3): 1-9. [3] 杨阳, 巩慧, 秦大同, 等. 基于效率优化的CVT重混汽车驱动控制策略[J]. 中国公路学报, 2014, 27 (3): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201403020.htmYANG Yang, GONG Hui, QIN Da-tong, et al. Drive control strategy for full hybrid electric vehicle with CVT based on efficiency optimization[J]. China Journal of Highway and Transport, 2014, 27 (3): 108-115. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201403020.htm [4] PAYRI F, GUARDIOLA C, PLA B, et al. A stochastic method for the energy management in hybrid electric vehicles[J]. Control Engineering Practice, 2014, 29 (8): 257-265. [5] 郑舒阳, 金纯, 罗维东. 矿用汽车动力源功率匹配控制策略[J]. 交通运输工程学报, 2015, 15 (1): 82-91. doi: 10.3969/j.issn.1671-1637.2015.01.011ZHENG Shu-yang, JIN Chun, LUO Wei-dong. Power matching control strategy of power source for mine truck[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (1): 82-91. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.01.011 [6] CHEN Li, ZHU Fu-tang, ZHANG Min-min, et al. Design and analysis of an electric variable transmission for a seriesparallel hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2011, 60 (5): 2354-2363. doi: 10.1109/TVT.2011.2134876 [7] 刘翠, 初亮, 郭建华, 等. 并联混合动力汽车驱动模式切换扭矩协调控制[J]. 华中科技大学学报: 自然科学版, 2013, 41 (12): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201312018.htmLIU Cui, CHU Liang, GUO Jian-hua, et al. Torque coordination algorithm for driving mode-transition of PHEV[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2013, 41 (12): 85-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201312018.htm [8] 何仁, 束驰. 混合动力电动汽车动力切换协调控制综述[J]. 江苏大学学报: 自然科学版, 2014, 35 (4): 373-379. doi: 10.3969/j.issn.1671-7775.2014.04.001HE Ren, SHU Chi. Overview of power-switch coordinated control of hybrid electric car[J]. Journal of Jiangsu University: Natural Science Edition, 2014, 35 (4): 373-379. (in Chinese). doi: 10.3969/j.issn.1671-7775.2014.04.001 [9] 童毅. 并联式混合动力系统动态协调控制问题的研究[D]. 清华大学, 2004.TONG Yi. Study on the coordinated control issue in parallel hybrid electric system[D]. Beijing: Tsinghua University, 2004. (in Chinese). [10] DAVIS R I, LORENZ R D. Engine torque ripple cancellation with an integrated starter alternator in a hybrid electric vehicle: implementation and control[J]. IEEE Transactions on Industry Applications, 2003, 39 (6): 1765-1774. doi: 10.1109/TIA.2003.818972 [11] KOPRUBASI K, WESTERVELT E R, RIZZONI G. Toward the systematic design of controllers for smooth hybrid electric vehicle mode changes[C]//IEEE. 2007 American Control Conference. New York: IEEE, 2007: 2985-2990. [12] 赵治国, 何宁, 朱阳, 等. 四轮驱动混合动力轿车驱动模式切换控制[J]. 机械工程学报, 2011, 47 (4): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201104021.htmZHAO Zhi-guo, HE Ning, ZHU Yang, et al. Mode transition control for four wheel drive hybrid electric car[J]. Journal of Mechanical Engineering, 2011, 47 (4): 100-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201104021.htm [13] WANG Lei, ZHANG Yong, SHU Jie, et al. Coordinated control of a series-parallel hybrid electric bus during EV/HEV mode transition[J]. WSEAS Transactions on Circuits and Systems, 2012, 11 (6): 198-209. [14] ZHANG Hu, WANG Cun-lei, ZHANG Yong, et al. Drivability improvements for a single-motor parallel hybrid electric vehicle using robust controls[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2014, 15 (4): 291-301. [15] SUN Jing, XING Guo-jing, LIU Xu-dong, et al. A novel torque coordination control strategy of a single-shaft parallel hybrid electric vehicle based on model predictive control[J]. Mathematical Problems in Engineering, 2015, 2015: 1-12. [16] KOPRUBASI K. Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements[D]. Columbus: Ohio State University, 2008. [17] YE X, JIN Z, HU X, et al. Modeling and control strategy development of a parallel hybrid electric bus[J]. International Journal of Automotive Technology, 2013, 14 (6): 971-985. doi: 10.1007/s12239-013-0107-y [18] KIM H, KIM J, LEE H. Mode transition control using disturbance compensation for a parallel hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2011, 225 (2): 150-166. doi: 10.1243/09544070JAUTO1523 [19] 叶明, 舒红, 陈然. 插电式混合动力客车工作模式切换控制研究[J]. 中国公路学报, 2012, 25 (1): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201201020.htmYE Ming, SHU Hong, CHEN Ran. Research on control logic of work mode shifting for plug-in hybrid bus[J]. China Journal of Highway and Transport, 2012, 25 (1): 141-145. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201201020.htm [20] 李琼林, 刘会金, 宋晓凯, 等. 基于切换系统理论的三相变流器建模及其稳定性分析[J]. 电工技术学报, 2009, 24 (11): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200911015.htmLI Qiong-lin, LIU Hui-jin, SONG Xiao-kai, et al. Modeling and stability analysis of three-phase converter based on switching system theory[J]. Transactions of China Electrotechnical Society, 2009, 24 (11): 89-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200911015.htm [21] 王磊, 张勇, 舒杰, 等. 基于模糊自适应滑模方法的混联式混合动力客车模式切换协调控制[J]. 机械工程学报, 2012, 48 (14): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201214019.htmWANG Lei, ZHANG Yong, SHU Jie, et al. Mode transition control for series-parallel hybrid electric bus using fuzzy adaptive sliding mode approach[J]. Journal of Mechanical Engineering, 2012, 48 (14): 119-127. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201214019.htm [22] HE Hong-wen, RUI Xiong, CHANG Yu-hua. Dynamic modeling and simulation on a hybrid power system for electric vehicle application[J]. Energies, 2010, 3 (11): 1821-1830. [23] DU Chang-qing, YAN Fu-wu, CAO Zheng-ce, et al. Smooth mode-switch control for the powertrain of parallel hybrid electric vehicle[C]//IEEE. 2009Asia-Pacific Power and Energy Engineering Conference. New York: IEEE, 2009: 1-4. [24] 赵治国, 杨云云, 陈海军, 等. 干式DCT变速混合动力轿车换挡过程转矩协调优化控制[J]. 中国公路学报, 2015, 28 (8): 109-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508015.htmZHAO Zhi-guo, YANG Yun-yun, CHEN Hai-jun, et al. Torque coordinating optimal control in shifting process for hybrid car equipped with dry dual clutch transmission[J]. China Journal of Highway and Transport, 2015, 28 (8): 109-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508015.htm [25] 杨阳, 李小强, 苏岭, 等. 重度混合动力汽车工作模式切换控制策略[J]. 中国公路学报, 2014, 27 (6): 109-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201406017.htmYANG Yang, LI Xiao-qiang, SU Ling, et al. Control strategy for mode-switch of full hybrid electric vehicle[J]. China Journal of Highway and Transport, 2014, 27 (6): 109-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201406017.htm [26] CHEN Li, XI Gang, SUN Jing. Torque coordination control during mode transition for a series-parallel hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61 (7): 2936-2949.