Finite element simulation on pantograph-catenary dynamic system for Beijing-Tianjin intercity high-speed railway
-
摘要: 基于非线性有限元理论, 建立了京津城际高速铁路弓网动态系统的有限元模型, 采用欧拉-伯努利直梁模拟接触网各部件, 采用铰链和非线性弹簧相互耦合模拟受电弓, 借助MARC软件, 对京津城际高速铁路弓网受流情况进行了动态仿真, 并利用MARC的后处理功能显示弓网运动过程中的三维动态情况。计算得到了京津城际弓网动态系统的平均接触压力为160.68N, 接触点动态抬升量变化范围为28.5~87.0mm。与西门子公司提供的仿真结果及京津城际现场的测试结果比较表明: 有限元模型是正确和有效的, 京津城际弓网动态系统具有良好的动态受流质量。Abstract: Based on the nonlinear finite element theory(FEM), a finite element model of the pantograph-catenary dynamic system of Beijing-Tianjin intercity high-speed railway was established, in which nonlinear flexible catenary was modelled by using Euler-Bernoulli flexible beam and the pantograph was modelled by using hinge and nonlinear springs. The dynamic current-collecting performance of the system was simulated by using MARC software, and using whose post-processing function, the three dimensional dynamic performance of pantograph-catenary was shown. Computation result shows that the average pantograph-catenary contact pressure is 160.68 N and the dynamic uplift of contact position is between 28.5 mm and 87.0 mm. Compared with the simulation result provided by Siemens and the measure result, the model is correct and credible, the dynamic current-collecting performance is perfect.
-
表 1 接触网部件的几何参数和材料特性
Table 1. Geometry parameters and material properties of catenary components
部件 杨氏模量/GPa 泊松比 质量密度/(kg·m-3) 截面面积/mm2 材料 接触线 120 0.33 8 900 120 AgCu-120 承力索 120 0.33 8 900 120 铜TJ-120 吊弦 120 0.33 8 900 10 青铜铰线 定位器 210 0.30 2 700 2 700 铝 斜腕臂 210 0.30 7 850 5 026 钢 表 2 仿真与实测结果比较
Table 2. Comparison of simulation and experiment results
指标 本文仿真结果 西门子计算结果 实测结果 平均接触压力/N 160.68 148.00 142.00 最大抬升量/mm 87.0 85.0 最小抬升量/mm 28.5 14.8 表 3 弓网离线统计结果
Table 3. Off-line statistic of pantograph-catenary
发生离线的次数/次 离线步数/步 离线时间/s 1 3 0.035 72 2 1 0.017 86 3 2 0.017 86 4 1 0.017 86 5 5 0.071 43 6 2 0.017 86 -
[1] SEOJ H, KI MS W, JUNGI H. Dynamic analysis of a panto-graph-catenary system using absolute nodal coordinates[J]. Vehicle System Dynamics, 2006, 44(16): 615-630. [2] COLLI NA A, BRUNI S. Numerical si mulation of panto-graph-overhead equipment interaction[J]. Vehicle System Dynamics, 2002, 38(4): 261-291. doi: 10.1076/vesd.38.4.261.8286 [3] 刘莉蓉, 潘英, 韩通新, 等. 200km. h-1山区客货共线电气化铁路弓网受流的设计应用分析[J]. 中国铁道科学, 2007, 28(1): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201406012.htmLI U Li-rong, PAN Ying, HAN Tong-xin, et al. Analysis on the design and application of the pantograph-catenary current collection of passenger and freight200km/h electrified rail-way line in mountainous area[J]. China Rail way Science, 2007, 28(1): 93-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201406012.htm [4] 于万聚. 高速接触网-受电弓系统动态特性研究[J]. 铁道学报, 1993, 15(2): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199302002.htmYU Wan-ju. Astudy onthe dynamic current-carrying charac-teristics of the high-speed rail way pantograph-catenary[J]. Journal of the China Rail way Society, 1993, 15(2): 16-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199302002.htm [5] 戴南山. 高速受流性能探讨[J]. 电力机车技术, 2001, 24(1): 17-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI200101005.htmDAI Nan-shan. Analysis onthe current collection performance[J]. Technology for Electric Locomotives, 2001, 24(1): 17-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI200101005.htm [6] 蔡成标, 翟婉明. 高速铁路受电弓-接触网系统动态性能仿真研究[J]. 铁道学报, 1997, 19(5): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB705.006.htmCAI Cheng-biao, ZHAI Wan-ming. Study on si mulation dynamic performance of pantograph-catenary system at high speed rail way[J]. Journal of the China Rail way Society, 1997, 19(5): 38-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB705.006.htm [7] 毕继红, 张峰, 刘峰涛. 刚性悬挂接触网/受电弓系统动力分析[J]. 沈阳理工大学学报, 2007, 8(4): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SGXY200704026.htmBI Ji-hong, ZHANG Feng, LIU Feng-tao. Dynamic analysis of rigid suspension catenary-pantograph system[J]. Transactions of Shenyang Ligong University, 2007, 8(4): 91-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGXY200704026.htm [8] 刘子建, 莫祖栋, 赵世宜. 机车受电弓弓头弹簧系统的优化设计[J]. 湖南大学学报: 自然科学版, 2005, 32(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX200506008.htmLI UZi-jian, MOZu-dong, ZHAOShi-yi. Opti mumdesign of collector head spring system of pantograph[J]. Journal of Hunan University: Natural Sciences, 2005, 32(6): 37-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX200506008.htm [9] 郭京波, 杨绍普, 高国生, 等. 高速铁路弓网系统受流稳定性与Lyapunov指数[J]. 中国安全科学学报, 2005, 15(3): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200503015.htmGUOJing-bo, YANG Shao-pu, GAO Guo-sheng, et al. Stable current-collecting and Lyapunov exponents for high-speed train pantograph-catenary s system[J]. China Safety Science Journal, 2005, 15(3): 61-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200503015.htm