-
摘要: 为保证多孔混凝土排水基层的平整度, 通过体积法对免振捣多孔混凝土排水基层进行了配合比设计, 计算得到各配合比参数、稀释系数、合理的水灰比及用水量, 提出了免振捣多孔混凝土工作性评价方法——富余浆量法和评价指标——富余浆量比, 通过正交试验设计, 得到了富余浆量比的回归关系式、7d抗压强度和有效空隙率之间的相关关系式, 最后提出了基于经验公式的免振捣多孔混凝土配合比设计方法。性能试验表明: 该方法设计的混合料7d抗压强度在3~5MPa(重交通)和5~8MPa(特重交通)之间, 空隙率在20%~30%之间, 均达到设计标准, 因此, 该设计方法可行。Abstract: In order to ensure the smoothness of porous permeable concrete base, volume method was used for the mix design of non-vibration porous permeable concrete base, mix proportion parameters, dilution coefficience, reasonable water cement ratio and water consumption were calculated, the evaluating method and index for the workability of non-vibration porous permeable concrete base were given, such as margin cement mortars method and margin cement mortars ratio. Through orthogonality design, the regression equation of margin cement mortars ratio and the relationship between 7 d compression strength and effective porosity were obtained, and the mix design method of porous concrete with non-vibration molding was indicated on the basis of empirical formulas. Analysis result shows that the mixture designed by the method can satisfy the design standard that 7 d compression strength is 3~5 MPa for heavy traffic and 5~8 MPa for special heavy traffic, effective porosity is 20%30%, so the design method is feasible. 10 tAbs, 13 refs.
-
Key words:
- pavement material /
- porous concrete with non-vibration molding /
- workability /
- porosity /
- mix design
-
表 1 水泥技术指标
Table 1. Technical indexes of cement
指标 水泥胶砂强度 凝结时间/h 细度/% 标准稠度需水量/% 安定性 抗折强度/MPa 抗压强度/MPa 3 d 28 d 3 d 28 d 初凝 终凝 实测值 3.87 8.50 18.00 44.70 4.20 5.37 3.88 27.70 合格 表 2 粗集料技术指标
Table 2. Technical indexes of coarse aggregate
指标 松堆密度/(g·cm-3) 吸水率/% 含泥量/% 针片状含量/% 压碎值/% 实测值 1.45 0.88 0.40 5.82 6.50 表 3 细集料技术指标
Table 3. Technical indexes of fine aggregate
指标 细度模数 含泥量/% 表观密度/(g·cm-3) 吸水率/% 实测值 2.92 2.10 2.95 1.23 表 4 粗集料级配
Table 4. Coarse aggregate gradations
级配类型 筛径/mm 31.5 26.5 19 16 9.5 4.75 2.36 级配1 100 90~100 20~55 0~10 0~5 级配2 100 76~87 50~71 0~5 级配3 90~100 25~60 0~10 0~5 级配4 100 90~100 35~65 20~45 0~10 0~5 表 5 砂的细度模数与最优砂率关系
Table 5. Relation between fineness modulus and best sand ratio
细度模数 2.2~2.5 2.5~2.8 2.8~3.1 3.1~3.4 3.4~3.7 Sp/% 碎石 4~8 6~10 8~12 10~14 12~16 卵石 2~6 4~8 6~10 8~12 10~14 注: 砂率可根据当地情况增减1%~2%。 表 6 正交设计因素水平
Table 6. Factors and levels of orthogonality design
水平 因素 级配 灰集比 水灰比 砂率/% 1 级配1 1∶8 0.48 0 2 级配2 1∶9 0.51 5 3 级配3 1∶10 0.54 10 4 级配4 1∶11 0.57 15 表 7 正交设计和配合比安排与试验结果
Table 7. Orthogonality design, mixture ratio arrangement and test result
配比编号 试验号 设计序列 质量配合比 7 d抗压强度/MPa 有效空隙率/% 富余浆量比/% A B C D E 集料 水泥 水 砂 1-1 1 1 1 1 1 1 1 567.0 195.9 94.0 0.0 5.1 26.1 5.02 1-2 2 1 2 2 2 2 1 488.7 174.1 88.8 78.4 7.4 23.1 6.63 1-3 3 1 3 3 3 3 1 410.3 156.7 84.6 156.7 7.7 21.9 7.63 1-4 4 1 4 4 4 4 1 332.0 142.5 81.2 235.1 7.7 20.7 9.58 2-1 5 2 1 2 3 4 1 391.8 193.3 98.6 154.6 6.0 25.4 5.43 2-2 6 2 2 1 4 3 1 314.4 171.8 82.5 232.0 5.0 30.5 6.37 2-3 7 2 3 4 1 2 1 546.4 154.6 88.1 0.0 6.7 26.6 7.78 2-4 8 2 4 3 2 1 1 469.1 140.6 75.9 77.3 5.9 27.4 5.96 3-1 9 3 1 3 4 2 1 361.5 200.2 108.1 240.3 5.5 27.0 9.52 3-2 10 3 2 4 3 1 1 441.6 178.0 101.5 160.2 3.9 31.6 9.56 3-3 11 3 3 1 2 4 1 521.7 160.2 76.9 80.1 3.9 31.4 8.07 3-4 12 3 4 2 1 3 1 601.8 145.6 74.3 0.0 4.8 29.1 6.06 4-1 13 4 1 4 2 3 1 528.6 201.1 114.6 80.5 2.9 32.9 8.90 4-2 14 4 2 3 1 4 1 609.0 178.8 96.6 0.0 4.1 30.5 7.04 4-3 15 4 3 2 4 1 1 367.7 160.9 82.1 241.4 4.7 29.1 9.57 4-4 16 4 4 1 3 2 1 448.1 146.3 70.2 160.9 3.3 31.2 6.13 表 8 设计抗压强度与弯拉强度
Table 8. Design compression strengthes and flexural tensile strengthes
设计强度 交通等级 特重 重 7 d抗压强度/MPa 5~8 3~5 28 d弯拉强度/MPa 1.5~2.5 1.0~2.0 表 9 配合比参数
Table 9. Mixture ratio parameters
计算项目 级配类型 级配1 级配2 级配3 级配4 粗集料用量/g 1 499 1 495 1 546 1 519 细集料用量/g 167 166 172 169 水泥用量C1/g 151 156 125 141 水泥用量C2/g 217 221 188 205 最终水泥用量C/g 151 156 125 141 水灰比W/C 0.5 0.5 0.5 0.5 用水量/g 75.5 78.0 62.5 70.5 表 10 抗压强度和有效空隙率
Table 10. Compression strengthes and effective porosities
指标 级配类型 级配1 级配2 级配3 级配4 7 d抗压强度/MPa 6.6 7.2 4.5 6.3 有效空隙率/% 23.0 23.4 29.0 25.8 -
[1] 郑木莲, 陈拴发, 王崇涛. 多孔混凝土的强度特性[J]. 长安大学学报: 自然科学版, 2006, 26(4): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604005.htmZHENG Mu-lian, CHEN Shuan-fa, WANG Chong-tao. Strength character of porous concrete[J]. Journal of Chang an University: Natural Science Edition, 2006, 26(4): 20-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604005.htm [2] 王秉纲. 高等级公路水泥混凝土路面贫混凝土基层及排水系统的应用研究[R]. 南宁: 广西交通科学研究所, 1999. [3] 郑木莲, 王秉纲, 胡长顺. 多孔混凝土疲劳性能的研究[J]. 中国公路学报, 2004, 17(1): 7-11. doi: 10.3321/j.issn:1001-7372.2004.01.002ZHENG Mu-lian, WANG Bing-gang, HU Chang-shun. Study of fatigue property of porous concrete[J]. China Journal of High-way and Transport, 2004, 17(1): 7-11. (in Chinese) doi: 10.3321/j.issn:1001-7372.2004.01.002 [4] 郑木莲. 多孔混凝土排水基层研究[D]. 西安: 长安大学, 2004. [5] CHEN Shuan-fa, ZHENG Mu-lian, WANG Bing-gang. For-mulation and application of fatigue equationfor porous cement concrete[J]. Journal of the Chinese Ceramic Society, 2005, 33(7): 827-831. [6] 郑木莲. 多孔混凝土的渗透系数及测试方法[J]. 交通运输工程学报, 2006, 6(4): 41-46. doi: 10.3321/j.issn:1671-1637.2006.04.010ZHENG Mu-lian. Permeability coefficient and test method of porous concrete[J]. Journal of Traffic and Transportation Engineering, 2006, 6(4): 41-46. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.04.010 [7] 盛燕萍, 陈拴发, 李海滨. 免振捣多孔混凝土路用性能研究[J]. 河北工业大学学报, 2007, 36(6): 99-105. doi: 10.3969/j.issn.1007-2373.2007.06.021SHENG Yan-ping, CHEN Shuan-fa, LI Hai-bin. Research of road performance of porous concrete with non-vibration molding[J]. Journal of Hebei University of Technology, 2007, 36(6): 99-105. (in Chinese) doi: 10.3969/j.issn.1007-2373.2007.06.021 [8] 盛燕萍, 陈拴发, 李占全. 免振捣多孔混凝土工作性研究[J]. 混凝土, 2007, 214(8): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200708011.htmSHENG Yan-ping, CHEN Shuan-fa, LI Zhan-quan. Re-search of workability of porous concrete with non-vibration molding[J]. Concrete, 2007, 214(8): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200708011.htm [9] 盛燕萍. 免振捣多孔混凝土性能及其配合比设计方法研究[D]. 西安: 长安大学, 2006. [10] 吉青克, 姚祖康. 多孔水泥稳定碎石组成设计[J]. 同济大学学报: 自然科学版, 2003, 31(2): 161-165. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200302006.htmJI Qing-ke, YAO Zu-kang. Mix design procedure of porous cement treated macadam[J]. Journal of Tongji University: Natural Science, 2003, 31(2): 161-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200302006.htm [11] SHI Cai-jun. Strength, pore structure and permeability of alkali-activated slag mortars[J]. Cement and Concrete Research, 1996, 26(12): 1789-1799. [12] CONSUEGRA A, LITTLE D N, VON Q H, et al. Comparative evaluation of laboratory compaction devices based on their ability to produce mixtures with engineering properties si milar to those produced in the field[R]. Washington DC: TRB, 1989. [13] LI NDLY J K, ASHRAF E. Open-graded highway bases make permeameter setupi mportant[J]. Journal of Transpor-tation Engineering, 1998, 124(2): 144-148.
计量
- 文章访问数: 370
- HTML全文浏览量: 124
- PDF下载量: 581
- 被引次数: 0