Effects of gyration compaction number on design and performance of Superpave mixture
-
摘要: 为研究旋转压实次数对Superpave混合料设计及性能的影响, 对Superpave20和Super-pave25两种沥青混合料在不同旋转压实次数(75、100和125)下进行了设计, 对得到的各类混合料进行了车辙、低温小梁弯曲、浸水马歇尔稳定度、冻融劈裂等试验, 计算了沥青膜厚度, 并铺筑了相应的试验段。通过室内试验和现场检测发现: 增加旋转压实次数并不一定会降低设计沥青用量; 当设计旋转压实次数增加25次时, 沥青混合料动稳定度可以增加15%~30%;增加旋转压实次数对混合料的低温性能和抗水损害性能影响很小, 沥青膜厚度随旋转压实次数的增加而增加。结果表明当集料的性能和现场施工工艺满足要求时, 可适当的增加设计旋转压实次数, 以提高混合料的路用性能。Abstract: In order to study the effects of gyration compaction number on the design and performance of Superpave mixture, Superpave 20 and Superpave 25 asphalt mixtures were designed by using different gyration compaction numbers (75, 100 and 125), and the various mixtures were evaluated by conducting wheel rutting, low-temperature bending beam, immersion Marshall stability and freeze-thaw split tests, asphalt film thicknesses were calculated, and corresponding field test sections were constructed. Test result shows that the increase of gyration compaction number for Superpave mixture does not necessarily decrease asphalt design content; the increase of gyration number by 25 can improve the dynamic stability of asphalt mixture by approximately 15%~30%. Gyration compaction number has negligible influences on the low-temperature performance and moisture damage susceptibility of asphalt mixtures, and asphalt film thickness increases with the increase of gyration compaction number. When aggregate properties and construction technologies meet the requirements, the field performance of asphalt mixture can be improved by increasing the design gyration compaction numbers.
-
表 1 Superpave20设计级配
Table 1. Design gradations of Superpave20 mixture
旋转压实次数 各筛孔尺寸(mm)上的通过率/(%) 26.5 19 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 100次 100.0 98.0 81.1 69.6 47.1 26.6 18.7 12.3 8.5 6.5 5.1 125次 100.0 97.8 79.3 67.5 44.6 24.6 17.2 11.2 7.7 5.8 4.5 表 2 Superpave25设计级配
Table 2. Design gradations of Superpave25 mixture
旋转压实次数 各筛孔尺寸(mm)上的通过率/(%) 31.5 26.5 19 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 75次 100.0 98.5 81.8 63.8 55.5 38.1 22.5 17.0 12.0 8.2 6.1 4.9 100次 100.0 98.7 83.5 66.9 56.0 34.7 23.2 15.7 9.8 6.0 5.3 4.2 125次 100.0 98.9 86.5 72.6 60.8 36.8 21.4 14.2 8.5 4.9 4.2 3.3 表 3 混合料旋转压实体积指标
Table 3. Volume indexes of mixtures from gyration compaction
混合料类型 级配 沥青用量/% 有效沥青用量/% 空隙率/% VMA值/% VFA值/% 粉胶比 Super-pave20 100次级配 4.5 4.05 4 13.5 70.4 1.29 125次级配 4.5 4.05 4 13.6 70.6 1.14 技术要求 4 ≥13 65~75 0.6~1.2* Super-pave25 75次级配 4.1 3.66 4 12.7 68.4 1.34 100次级配 4.1 3.68 4 12.6 68.1 1.14 125次级配 4.1 3.63 4 12.5 68.0 0.91 技术要求 4 ≥12 65~75 0.6~1.2* 注: 当级配通过限制区下方时, 粉胶比可放宽至0.8~1.6。 表 4 马歇尔试验结果
Table 4. Marshall test results
混合料类型 级配 毛体积密度/(g·cm-3) 空隙率/% 稳定度/kN 流值/0.1mm VMA值/% VFA值/% Super-pve20 100次级配 2.406 4.56 12.33 33.5 13.93 67.27 125次级配 2.393 5.01 13.39 35.1 14.44 65.31 技术要求 4~6 ≥8 20~50 ≥13 60~70 Super-pave25 75次级配 2.421 4.63 9.37 29.2 13.23 65.00 100次级配 2.397 5.68 9.59 30.9 14.12 59.77 125次级配 2.375 6.61 9.89 27.1 14.82 55.39 技术要求 4~6 ≥8 20~40 ≥12 60~70 表 5 不同压实功下混合料级配的变化
Table 5. Changes of mixture degradations under different compactive efforts
混合料类型 筛孔尺寸/mm 26.5 19 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 Superpave25(100次) 目标级配 98.7 83.5 66.9 56.0 34.7 23.2 15.7 9.8 6.0 5.3 4.2 抽提级配 100.0 85.4 68.6 57.8 36.0 24.3 16.8 11.2 7.4 6.3 5.3 变化幅度 1.3 1.9 1.7 1.8 1.3 1.1 1.1 1.4 1.4 1.0 1.1 Superpave25(125次) 目标级配 98.9 86.5 72.6 60.8 36.8 21.4 14.2 8.5 4.9 4.2 3.3 抽提级配 99.2 87.4 73.6 62.1 38.0 22.8 16.1 10.5 6.3 5.2 4.5 变化幅度 0.3 0.9 1.0 1.3 1.2 1.4 1.9 2.0 1.4 1.0 1.2 Superpave20 (100次) 目标级配 100.0 98.0 81.1 69.6 47.1 26.6 18.7 12.3 8.5 6.5 5.1 抽提级配 100.0 99.5 82.2 70.8 48.0 27.7 19.6 13.0 9.0 7.2 5.5 变化幅度 0.0 1.5 1.1 1.2 0.9 1.1 0.9 0.7 0.5 0.7 0.4 Superpave20(125次) 目标级配 100.0 97.8 79.3 67.5 44.6 24.6 17.2 11.2 7.7 5.8 4.5 抽提级配 100.0 98.2 79.7 68.2 45.2 25.3 17.9 11.6 8.0 6.0 4.8 变化幅度 0.0 0.4 0.4 0.7 0.6 0.7 0.7 0.4 0.3 0.2 0.3 表 6 车辙试验结果
Table 6. Rutting test results
混合料类型 级配 动稳定度/(次·mm-1) 平均值/(次·mm-1) Superpave20 100次级配 3 938 4 500 4 200 4 213 125次级配 5 250 4 500 4 846 4 865 技术要求 > 2 800 Superpave25 75次级配 1 016 1 068 1 212 1 099 100次级配 1 400 1 145 1 400 1 315 125次级配 1 800 1 432 1 853 1 695 技术要求 > 1 000 表 7 水稳定性试验结果
Table 7. Test results of moisture stability
混合料类型 级配 浸水马歇尔 冻融劈裂 非条件稳定度/kN 条件稳定度/kN 残留稳定度/% 非条件劈裂强度/MPa 条件劈裂强度/MPa 50次空隙率/% 劈裂强度比/% Superpave20 100次级配 12.33 11.23 91.1 1.304 3 1.131 5 5.30 86.8 125次级配 13.39 12.37 92.4 1.125 3 0.948 0 5.58 84.2 Superpave25 75次级配 9.37 8.33 88.9 1.174 0 0.982 0 5.42 83.6 100次级配 9.59 8.46 88.2 0.884 6 0.747 6 6.45 84.5 125次级配 9.89 9.14 92.4 1.126 9 0.953 3 7.25 84.6 技术要求 ≥85 技术要求 ≥80 表 8 比表面积和沥青膜厚
Table 8. Surface areas and film thicknesses
混合料类型 级配 比表面积/(m2·kg-1) 沥青膜厚/μm Superpave20 100次级配 4.55 8.0 125次级配 4.13 8.9 Superpave25 75次级配 4.24 8.7 100次级配 3.68 9.9 125次级配 3.12 11.6 表 9 低温小梁弯曲试验结果
Table 9. Test results of low-temperature bending beam
混合料类型 级配 最大荷载/kN 跨中挠度/mm 抗弯拉强度/MPa 破坏应变/με 劲度模量/MPa 破坏应变技术要求/με Super-pave20 100次级配 1.017 0.517 8.60 2 713 3 187 ≥2 500 125次级配 1.194 0.517 10.11 2 692 3 763 Super-pave25 75次级配 0.663 0.476 5.65 2 479 2 327 ≥2 000 100次级配 0.661 0.460 5.36 2 457 2 611 125次级配 0.851 0.443 7.14 2 320 3 160 表 10 生产配合比
Table 10. Job mix proportions
混合料类型 各筛孔尺寸(mm)上的通过率/% 31.5 26.5 19 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 Superpave20 100.0 100.0 97.8 81.3 67.5 42.6 24.6 17.2 11.2 7.7 5.8 4.5 Superpave25 100.0 98.9 89.5 75.7 61.6 34.5 20.3 14.1 9.1 6.1 4.5 4.0 表 11 试验段碾压方案
Table 11. Compaction procedures of test section
碾压阶段 压路机类型及数量 碾压方式及遍数 观测碾压速度/(km·h-1) 初压 BW202双钢轮压路机(3台) 前后振动4遍 2.5 复压 XP261胶轮压路机(3台) 各静压2遍(共6遍) 3.5 XP301胶轮压路机(1台) 静压1遍 终压 DYNAPAC双钢轮压路机(1台) 静压1遍 4.0 -
[1] 解晓光, 马松林, 王哲人. 沥青混合料马歇尔击实法与振动压实法成型工艺的比较研究[J]. 中国公路学报, 2001, 14(1): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200101002.htmXIE Xiao-guang, MA Song-lin, WANG Zhe-ren. Study of compacting properties of asphalt mixture with Marshall and vibratory compaction method[J]. China Journal of Highway and Transport, 2001, 14(1): 9-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200101002.htm [2] 张争奇, 袁迎捷, 王秉纲. 沥青混合料旋转压实密实曲线信息及其应用[J]. 中国公路学报, 2005, 18(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503002.htmZHANG Zheng-qi, YUAN Ying-jie, WANG Bing-gang. Information of gyratory compaction densification curve of asphalt mixture and its application[J]. China Journal of Highway and Transport, 2005, 18(3): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503002.htm [3] WITCZAK M W. Superpave support and performance models management[R]. Washington DC: Transportation Research Board National Research Council, 2006. [4] HUBER G A, ANDERSON R M. Superpave design compac-tion effort: validity of using density at the end of service life as parameter to define N-design[J]. Journal of Association of Asphalt Paving Technologists, 2004, 173: 807-836. [5] ASCHENBRENER T. Demonstration of a volumetric accept-ance program[R]. Washington DC: Transportation Research Board National Research Council, 1995. [6] 彭波, 田见效, 陈忠达. Superpave沥青混合料路用性能[J]. 长安大学学报: 自然科学版, 2003, 23(5): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200305006.htmPENG Bo, TI AN Jian-xiao, CHEN Zhong-da. Road per-formance of Superpave bituminous mixture[J]. Journal of Chang an University: Natural Science Edition, 2003, 23(5): 21-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200305006.htm [7] JTG F40—2004, 公路沥青路面施工技术规范[S]. [8] JTJ052—2000, 公路工程沥青及沥青混合料试验规程[S].
计量
- 文章访问数: 351
- HTML全文浏览量: 92
- PDF下载量: 244
- 被引次数: 0